0.03/0.12 % Problem : theBenchmark.p : TPTP v0.0.0. Released v0.0.0. 0.03/0.12 % Command : tptp2X_and_run_prover9 %d %s 0.12/0.33 % Computer : n020.cluster.edu 0.12/0.33 % Model : x86_64 x86_64 0.12/0.33 % CPU : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz 0.12/0.33 % Memory : 8042.1875MB 0.12/0.33 % OS : Linux 3.10.0-693.el7.x86_64 0.12/0.33 % CPULimit : 960 0.12/0.33 % DateTime : Thu Jul 2 06:57:17 EDT 2020 0.12/0.33 % CPUTime : 0.89/1.19 ============================== Prover9 =============================== 0.89/1.19 Prover9 (32) version 2009-11A, November 2009. 0.89/1.19 Process 11187 was started by sandbox2 on n020.cluster.edu, 0.89/1.19 Thu Jul 2 06:57:18 2020 0.89/1.19 The command was "/export/starexec/sandbox2/solver/bin/prover9 -t 960 -f /tmp/Prover9_11032_n020.cluster.edu". 0.89/1.19 ============================== end of head =========================== 0.89/1.19 0.89/1.19 ============================== INPUT ================================= 0.89/1.19 0.89/1.19 % Reading from file /tmp/Prover9_11032_n020.cluster.edu 0.89/1.19 0.89/1.19 set(prolog_style_variables). 0.89/1.19 set(auto2). 0.89/1.19 % set(auto2) -> set(auto). 0.89/1.19 % set(auto) -> set(auto_inference). 0.89/1.19 % set(auto) -> set(auto_setup). 0.89/1.19 % set(auto_setup) -> set(predicate_elim). 0.89/1.19 % set(auto_setup) -> assign(eq_defs, unfold). 0.89/1.19 % set(auto) -> set(auto_limits). 0.89/1.19 % set(auto_limits) -> assign(max_weight, "100.000"). 0.89/1.19 % set(auto_limits) -> assign(sos_limit, 20000). 0.89/1.19 % set(auto) -> set(auto_denials). 0.89/1.19 % set(auto) -> set(auto_process). 0.89/1.19 % set(auto2) -> assign(new_constants, 1). 0.89/1.19 % set(auto2) -> assign(fold_denial_max, 3). 0.89/1.19 % set(auto2) -> assign(max_weight, "200.000"). 0.89/1.19 % set(auto2) -> assign(max_hours, 1). 0.89/1.19 % assign(max_hours, 1) -> assign(max_seconds, 3600). 0.89/1.19 % set(auto2) -> assign(max_seconds, 0). 0.89/1.19 % set(auto2) -> assign(max_minutes, 5). 0.89/1.19 % assign(max_minutes, 5) -> assign(max_seconds, 300). 0.89/1.19 % set(auto2) -> set(sort_initial_sos). 0.89/1.19 % set(auto2) -> assign(sos_limit, -1). 0.89/1.19 % set(auto2) -> assign(lrs_ticks, 3000). 0.89/1.19 % set(auto2) -> assign(max_megs, 400). 0.89/1.19 % set(auto2) -> assign(stats, some). 0.89/1.19 % set(auto2) -> clear(echo_input). 0.89/1.19 % set(auto2) -> set(quiet). 0.89/1.19 % set(auto2) -> clear(print_initial_clauses). 0.89/1.19 % set(auto2) -> clear(print_given). 0.89/1.19 assign(lrs_ticks,-1). 0.89/1.19 assign(sos_limit,10000). 0.89/1.19 assign(order,kbo). 0.89/1.19 set(lex_order_vars). 0.89/1.19 clear(print_given). 0.89/1.19 0.89/1.19 % formulas(sos). % not echoed (96 formulas) 0.89/1.19 0.89/1.19 ============================== end of input ========================== 0.89/1.19 0.89/1.19 % From the command line: assign(max_seconds, 960). 0.89/1.19 0.89/1.19 ============================== PROCESS NON-CLAUSAL FORMULAS ========== 0.89/1.19 0.89/1.19 % Formulas that are not ordinary clauses: 0.89/1.19 1 (all U (ssList(U) -> (rearsegP(nil,U) <-> nil = U))) # label(ax52) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 2 (all U (ssItem(U) -> leq(U,U))) # label(ax31) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 3 (all U (ssList(U) -> frontsegP(U,nil))) # label(ax45) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 4 (all U (ssList(U) -> (all V (ssList(V) -> (V != U <-> neq(U,V)))))) # label(ax15) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 5 (all U (ssList(U) -> (all V (ssItem(V) -> tl(cons(V,U)) = U)))) # label(ax25) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 6 (all U (ssList(U) -> (all V (ssList(V) -> (frontsegP(V,U) & frontsegP(U,V) -> U = V))))) # label(ax41) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 7 (all U (ssList(U) -> ((exists V (U = cons(V,nil) & ssItem(V))) <-> singletonP(U)))) # label(ax4) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 8 (all U (ssList(U) -> (all V (ssList(V) -> ssList(app(U,V)))))) # label(ax26) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 9 (all U (ssList(U) -> (all V (ssList(V) -> ((exists W ((exists X (ssList(X) & app(app(W,V),X) = U)) & ssList(W))) <-> segmentP(U,V)))))) # label(ax7) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 10 (all U (ssList(U) -> (all V (ssItem(V) -> ssList(cons(V,U)))))) # label(ax16) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 11 (all U (ssList(U) -> (strictorderP(U) <-> (all V (ssItem(V) -> (all W (ssItem(W) -> (all X (ssList(X) -> (all Y (ssList(Y) -> (all Z (ssList(Z) -> (U = app(app(X,cons(V,Y)),cons(W,Z)) -> lt(W,V) | lt(V,W))))))))))))))) # label(ax10) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 12 (all U (ssList(U) -> rearsegP(U,U))) # label(ax49) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 13 (all U (ssItem(U) -> totalorderedP(cons(U,nil)))) # label(ax65) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 14 (all U (ssList(U) -> (all V (ssList(V) -> (all W (ssList(W) -> (rearsegP(V,W) & rearsegP(U,V) -> rearsegP(U,W)))))))) # label(ax47) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 15 (all U (ssItem(U) -> (all V (ssItem(V) -> (geq(U,V) & geq(V,U) -> V = U))))) # label(ax87) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 16 (all U (ssList(U) -> (all V (ssList(V) -> (segmentP(U,V) & segmentP(V,U) -> U = V))))) # label(ax54) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 17 (all U (ssList(U) -> (all V (ssList(V) -> (all W (ssList(W) -> (all X (ssList(X) -> (segmentP(U,V) -> segmentP(app(app(W,U),X),V)))))))))) # label(ax56) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 18 (all U (ssItem(U) -> (all V (ssItem(V) -> (all W (ssList(W) -> (all X (ssList(X) -> (frontsegP(cons(U,W),cons(V,X)) <-> U = V & frontsegP(W,X)))))))))) # label(ax44) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 19 (all U (ssItem(U) -> equalelemsP(cons(U,nil)))) # label(ax73) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 20 (all U (ssList(U) -> ((all V (ssItem(V) -> (all W (ssItem(W) -> (all X (ssList(X) -> (all Y (ssList(Y) -> (U = app(X,cons(V,cons(W,Y))) -> W = V))))))))) <-> equalelemsP(U)))) # label(ax14) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 21 (exists U (ssItem(U) & (exists V (ssItem(V) & U != V)))) # label(ax2) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 22 (all U (ssList(U) -> (all V (ssList(V) -> (all W (ssList(W) -> (frontsegP(U,V) -> frontsegP(app(U,W),V)))))))) # label(ax43) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 23 (all U (ssItem(U) -> (all V (ssItem(V) -> (all W (ssItem(W) -> (geq(V,W) & geq(U,V) -> geq(U,W)))))))) # label(ax88) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 24 (all U (ssItem(U) -> (all V (ssItem(V) -> (lt(V,U) <-> gt(U,V)))))) # label(ax35) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 25 (all U (ssList(U) -> (U != nil -> ssItem(hd(U))))) # label(ax22) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 26 (all U (ssList(U) -> U = app(nil,U))) # label(ax28) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 27 (all U (ssList(U) -> (all V (ssList(V) -> (all W (ssList(W) -> (app(W,V) = app(U,V) -> W = U))))))) # label(ax79) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 28 (all U (ssList(U) -> (all V (ssList(V) -> (all W (ssItem(W) -> cons(W,app(V,U)) = app(cons(W,V),U))))))) # label(ax27) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 29 (all U (ssItem(U) -> -lt(U,U))) # label(ax90) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 30 (all U (ssList(U) -> (cyclefreeP(U) <-> (all V (ssItem(V) -> (all W (ssItem(W) -> (all X (ssList(X) -> (all Y (ssList(Y) -> (all Z (ssList(Z) -> (app(app(X,cons(V,Y)),cons(W,Z)) = U -> -(leq(V,W) & leq(W,V)))))))))))))))) # label(ax8) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 31 (all U (ssList(U) -> (all V (ssList(V) -> (all W (ssList(W) -> (rearsegP(U,V) -> rearsegP(app(W,U),V)))))))) # label(ax50) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 32 (all U (ssList(U) -> (all V (ssItem(V) -> app(cons(V,nil),U) = cons(V,U))))) # label(ax81) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 33 (all U (ssItem(U) -> strictorderP(cons(U,nil)))) # label(ax63) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 34 (all U (ssList(U) -> (all V (ssItem(V) -> (memberP(U,V) <-> (exists W ((exists X (U = app(W,cons(V,X)) & ssList(X))) & ssList(W)))))))) # label(ax3) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 35 (all U (ssList(U) -> (U = nil <-> frontsegP(nil,U)))) # label(ax46) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 36 (all U (ssList(U) -> (all V (ssList(V) -> (all W (ssItem(W) -> (all X (ssItem(X) -> (cons(X,V) = cons(W,U) -> V = U & X = W))))))))) # label(ax19) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 37 (all U (ssList(U) -> segmentP(U,U))) # label(ax55) # label(axiom) # label(non_clause). [assumption]. 0.89/1.19 38 (all U (ssList(U) -> ((all V (ssItem(V) -> (all W (ssItem(W) -> (all X (ssList(X) -> (all Y (ssList(Y) -> (all Z (ssList(Z) -> (U = app(app(X,cons(V,Y)),cons(W,Z)) -> leq(V,W)))))))))))) <-> totalorderedP(U)))) # label(ax11) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 39 (all U (ssItem(U) -> (all V (ssList(V) -> (totalorderedP(cons(U,V)) <-> nil != V & leq(U,hd(V)) & totalorderedP(V) | V = nil))))) # label(ax67) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 40 (all U (ssList(U) -> segmentP(U,nil))) # label(ax57) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 41 (all U (ssList(U) -> (all V (ssList(V) -> (all W (ssList(W) -> (segmentP(U,V) & segmentP(V,W) -> segmentP(U,W)))))))) # label(ax53) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 42 (all U (ssList(U) -> (exists V (ssList(V) & (exists W (ssItem(W) & cons(W,V) = U)))) | U = nil)) # label(ax20) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 43 (all U (ssItem(U) -> cyclefreeP(cons(U,nil)))) # label(ax59) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 44 (all U (ssItem(U) -> (all V (ssItem(V) -> (all W (ssItem(W) -> (lt(V,W) & lt(U,V) -> lt(U,W)))))))) # label(ax34) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 45 (all U (ssList(U) -> (all V (ssList(V) -> (rearsegP(U,V) & rearsegP(V,U) -> U = V))))) # label(ax48) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 46 (all U (ssItem(U) -> duplicatefreeP(cons(U,nil)))) # label(ax71) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 47 (all U (ssItem(U) -> (all V (ssItem(V) -> (leq(U,V) -> lt(U,V) | U = V))))) # label(ax92) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 48 (all U (ssItem(U) -> strictorderedP(cons(U,nil)))) # label(ax68) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 49 (all U (ssItem(U) -> (all V (ssItem(V) -> (leq(V,U) <-> geq(U,V)))))) # label(ax32) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 50 (all U (ssList(U) -> (all V (ssList(V) -> (all W (ssList(W) -> app(U,app(V,W)) = app(app(U,V),W))))))) # label(ax82) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 51 (all U (ssList(U) -> (segmentP(nil,U) <-> nil = U))) # label(ax58) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 52 (all U (ssList(U) -> (all V (ssList(V) -> (V != nil & U != nil & hd(U) = hd(V) & tl(U) = tl(V) -> V = U))))) # label(ax77) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 53 (all U (ssItem(U) -> (all V (ssItem(V) -> (gt(U,V) -> -gt(V,U)))))) # label(ax94) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 54 (all U (ssList(U) -> (all V (ssItem(V) -> hd(cons(V,U)) = V)))) # label(ax23) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 55 (all U (ssList(U) -> (all V (ssItem(V) -> U != cons(V,U))))) # label(ax18) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 56 (all U (ssList(U) -> (nil != U -> (exists V (ssItem(V) & hd(U) = V))))) # label(ax75) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 57 (all U (ssList(U) -> (nil != U -> ssList(tl(U))))) # label(ax24) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 58 (all U (ssItem(U) -> (all V (ssItem(V) -> (all W (ssItem(W) -> (leq(U,V) & leq(V,W) -> leq(U,W)))))))) # label(ax30) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 59 (all U (ssList(U) -> (all V (ssList(V) -> ((exists W (U = app(V,W) & ssList(W))) <-> frontsegP(U,V)))))) # label(ax5) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 60 (all U (ssItem(U) -> (all V (ssItem(V) -> (all W (ssItem(W) -> (gt(V,W) & gt(U,V) -> gt(U,W)))))))) # label(ax95) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 61 (all U (ssList(U) -> (all V (ssList(V) -> (U != nil -> hd(app(U,V)) = hd(U)))))) # label(ax85) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 62 (all U (ssList(U) -> (duplicatefreeP(U) <-> (all V (ssItem(V) -> (all W (ssItem(W) -> (all X (ssList(X) -> (all Y (ssList(Y) -> (all Z (ssList(Z) -> (app(app(X,cons(V,Y)),cons(W,Z)) = U -> W != V)))))))))))))) # label(ax13) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 63 (all U (ssList(U) -> (all V (ssList(V) -> (all W (ssList(W) -> (frontsegP(U,V) & frontsegP(V,W) -> frontsegP(U,W)))))))) # label(ax40) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 64 (all U (ssList(U) -> (all V (ssList(V) -> (all W (ssList(W) -> (app(V,W) = app(V,U) -> W = U))))))) # label(ax80) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 65 (all U (ssList(U) -> (all V (ssList(V) -> ((exists W (ssList(W) & app(W,V) = U)) <-> rearsegP(U,V)))))) # label(ax6) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 66 (all U (ssItem(U) -> totalorderP(cons(U,nil)))) # label(ax61) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 67 (all U (ssItem(U) -> (all V (ssItem(V) -> (U != V <-> neq(U,V)))))) # label(ax1) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 68 (all U (ssList(U) -> U = app(U,nil))) # label(ax84) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 69 (all U (ssList(U) -> (all V (ssList(V) -> (nil = app(U,V) <-> U = nil & nil = V))))) # label(ax83) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 70 (all U (ssList(U) -> (all V (ssList(V) -> (nil != U -> tl(app(U,V)) = app(tl(U),V)))))) # label(ax86) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 71 (all U (ssList(U) -> frontsegP(U,U))) # label(ax42) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 72 (all U (ssList(U) -> ((all V (ssItem(V) -> (all W (ssItem(W) -> (all X (ssList(X) -> (all Y (ssList(Y) -> (all Z (ssList(Z) -> (app(app(X,cons(V,Y)),cons(W,Z)) = U -> leq(W,V) | leq(V,W)))))))))))) <-> totalorderP(U)))) # label(ax9) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 73 (all U (ssItem(U) -> geq(U,U))) # label(ax89) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 74 (all U (ssList(U) -> (nil != U -> U = cons(hd(U),tl(U))))) # label(ax78) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 75 (all U (ssList(U) -> rearsegP(U,nil))) # label(ax51) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 76 (all U (ssItem(U) -> (all V (ssItem(V) -> (all W (ssItem(W) -> (leq(U,V) & lt(V,W) -> lt(U,W)))))))) # label(ax91) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 77 (all U (ssItem(U) -> (all V (ssList(V) -> (strictorderedP(cons(U,V)) <-> V != nil & lt(U,hd(V)) & strictorderedP(V) | nil = V))))) # label(ax70) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 78 (all U (ssList(U) -> ((all V (ssItem(V) -> (all W (ssItem(W) -> (all X (ssList(X) -> (all Y (ssList(Y) -> (all Z (ssList(Z) -> (app(app(X,cons(V,Y)),cons(W,Z)) = U -> lt(V,W)))))))))))) <-> strictorderedP(U)))) # label(ax12) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 79 (all U (ssItem(U) -> (all V (ssItem(V) -> (lt(U,V) <-> U != V & leq(U,V)))))) # label(ax93) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 80 (all U (ssItem(U) -> -memberP(nil,U))) # label(ax38) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 81 (all U (ssItem(U) -> (all V (ssList(V) -> (all W (ssList(W) -> (memberP(W,U) | memberP(V,U) <-> memberP(app(V,W),U)))))))) # label(ax36) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 82 (all U (ssItem(U) -> (all V (ssItem(V) -> (leq(U,V) & leq(V,U) -> U = V))))) # label(ax29) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 83 (all U (ssList(U) -> (all V (ssItem(V) -> nil != cons(V,U))))) # label(ax21) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 84 (all U (ssList(U) -> (U != nil -> (exists V (tl(U) = V & ssList(V)))))) # label(ax76) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 85 (all U (ssItem(U) -> (all V (ssItem(V) -> (all W (ssList(W) -> (U = V | memberP(W,U) <-> memberP(cons(V,W),U)))))))) # label(ax37) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 86 (all U (ssItem(U) -> (all V (ssItem(V) -> (lt(U,V) -> -lt(V,U)))))) # label(ax33) # label(axiom) # label(non_clause). [assumption]. 0.93/1.20 87 -(all U (ssList(U) -> (all V (ssList(V) -> (all W (ssList(W) -> (all X (ssList(X) -> W != U | -neq(V,nil) | nil = X & W != nil | (all Y (ssItem(Y) -> W != cons(Y,nil) | -memberP(X,Y))) & neq(X,nil) | neq(U,nil) | V != X)))))))) # label(co1) # label(negated_conjecture) # label(non_clause). [assumption]. 0.93/1.20 0.93/1.20 ============================== end of process non-clausal formulas === 0.93/1.20 0.93/1.20 ============================== PROCESS INITIAL CLAUSES =============== 0.93/1.20 0.93/1.20 ============================== PREDICATE ELIMINATION ================= 0.93/1.20 88 -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | app(D,cons(B,cons(C,E))) != A | C = B | -equalelemsP(A) # label(ax14) # label(axiom). [clausify(20)]. 0.93/1.20 89 equalelemsP(nil) # label(ax74) # label(axiom). [assumption]. 0.93/1.20 90 -ssItem(A) | equalelemsP(cons(A,nil)) # label(ax73) # label(axiom). [clausify(19)]. 0.93/1.23 91 -ssList(A) | ssItem(f9(A)) | equalelemsP(A) # label(ax14) # label(axiom). [clausify(20)]. 0.93/1.23 92 -ssList(A) | ssItem(f10(A)) | equalelemsP(A) # label(ax14) # label(axiom). [clausify(20)]. 0.93/1.23 93 -ssList(A) | ssList(f11(A)) | equalelemsP(A) # label(ax14) # label(axiom). [clausify(20)]. 0.93/1.23 94 -ssList(A) | ssList(f12(A)) | equalelemsP(A) # label(ax14) # label(axiom). [clausify(20)]. 0.93/1.23 95 -ssList(A) | app(f11(A),cons(f9(A),cons(f10(A),f12(A)))) = A | equalelemsP(A) # label(ax14) # label(axiom). [clausify(20)]. 0.93/1.23 96 -ssList(A) | f10(A) != f9(A) | equalelemsP(A) # label(ax14) # label(axiom). [clausify(20)]. 0.93/1.23 Derived: -ssList(nil) | -ssItem(A) | -ssItem(B) | -ssList(C) | -ssList(D) | app(C,cons(A,cons(B,D))) != nil | B = A. [resolve(88,h,89,a)]. 0.93/1.23 Derived: -ssList(cons(A,nil)) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | app(D,cons(B,cons(C,E))) != cons(A,nil) | C = B | -ssItem(A). [resolve(88,h,90,b)]. 0.93/1.23 Derived: -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | app(D,cons(B,cons(C,E))) != A | C = B | -ssList(A) | ssItem(f9(A)). [resolve(88,h,91,c)]. 0.93/1.23 Derived: -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | app(D,cons(B,cons(C,E))) != A | C = B | -ssList(A) | ssItem(f10(A)). [resolve(88,h,92,c)]. 0.93/1.23 Derived: -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | app(D,cons(B,cons(C,E))) != A | C = B | -ssList(A) | ssList(f11(A)). [resolve(88,h,93,c)]. 0.93/1.23 Derived: -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | app(D,cons(B,cons(C,E))) != A | C = B | -ssList(A) | ssList(f12(A)). [resolve(88,h,94,c)]. 0.93/1.23 Derived: -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | app(D,cons(B,cons(C,E))) != A | C = B | -ssList(A) | app(f11(A),cons(f9(A),cons(f10(A),f12(A)))) = A. [resolve(88,h,95,c)]. 0.93/1.23 Derived: -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | app(D,cons(B,cons(C,E))) != A | C = B | -ssList(A) | f10(A) != f9(A). [resolve(88,h,96,c)]. 0.93/1.23 97 -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | leq(C,B) | leq(B,C) | -totalorderP(A) # label(ax9) # label(axiom). [clausify(72)]. 0.93/1.23 98 totalorderP(nil) # label(ax62) # label(axiom). [assumption]. 0.93/1.23 99 -ssItem(A) | totalorderP(cons(A,nil)) # label(ax61) # label(axiom). [clausify(66)]. 0.93/1.23 100 -ssList(A) | ssItem(f35(A)) | totalorderP(A) # label(ax9) # label(axiom). [clausify(72)]. 0.93/1.23 101 -ssList(A) | ssItem(f36(A)) | totalorderP(A) # label(ax9) # label(axiom). [clausify(72)]. 0.93/1.23 102 -ssList(A) | ssList(f37(A)) | totalorderP(A) # label(ax9) # label(axiom). [clausify(72)]. 0.93/1.23 103 -ssList(A) | ssList(f38(A)) | totalorderP(A) # label(ax9) # label(axiom). [clausify(72)]. 0.93/1.23 104 -ssList(A) | ssList(f39(A)) | totalorderP(A) # label(ax9) # label(axiom). [clausify(72)]. 0.93/1.23 105 -ssList(A) | app(app(f37(A),cons(f35(A),f38(A))),cons(f36(A),f39(A))) = A | totalorderP(A) # label(ax9) # label(axiom). [clausify(72)]. 0.93/1.23 106 -ssList(A) | -leq(f36(A),f35(A)) | totalorderP(A) # label(ax9) # label(axiom). [clausify(72)]. 0.93/1.23 107 -ssList(A) | -leq(f35(A),f36(A)) | totalorderP(A) # label(ax9) # label(axiom). [clausify(72)]. 0.93/1.23 Derived: -ssList(nil) | -ssItem(A) | -ssItem(B) | -ssList(C) | -ssList(D) | -ssList(E) | app(app(C,cons(A,D)),cons(B,E)) != nil | leq(B,A) | leq(A,B). [resolve(97,j,98,a)]. 0.93/1.23 Derived: -ssList(cons(A,nil)) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != cons(A,nil) | leq(C,B) | leq(B,C) | -ssItem(A). [resolve(97,j,99,b)]. 0.93/1.23 Derived: -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | leq(C,B) | leq(B,C) | -ssList(A) | ssItem(f35(A)). [resolve(97,j,100,c)]. 0.93/1.23 Derived: -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | leq(C,B) | leq(B,C) | -ssList(A) | ssItem(f36(A)). [resolve(97,j,101,c)]. 0.93/1.23 Derived: -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | leq(C,B) | leq(B,C) | -ssList(A) | ssList(f37(A)). [resolve(97,j,102,c)]. 0.93/1.34 Derived: -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | leq(C,B) | leq(B,C) | -ssList(A) | ssList(f38(A)). [resolve(97,j,103,c)]. 0.93/1.34 Derived: -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | leq(C,B) | leq(B,C) | -ssList(A) | ssList(f39(A)). [resolve(97,j,104,c)]. 0.93/1.34 Derived: -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | leq(C,B) | leq(B,C) | -ssList(A) | app(app(f37(A),cons(f35(A),f38(A))),cons(f36(A),f39(A))) = A. [resolve(97,j,105,c)]. 0.93/1.34 Derived: -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | leq(C,B) | leq(B,C) | -ssList(A) | -leq(f36(A),f35(A)). [resolve(97,j,106,c)]. 0.93/1.34 Derived: -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | leq(C,B) | leq(B,C) | -ssList(A) | -leq(f35(A),f36(A)). [resolve(97,j,107,c)]. 0.93/1.34 108 -ssList(A) | strictorderP(A) | ssItem(f4(A)) # label(ax10) # label(axiom). [clausify(11)]. 0.93/1.34 109 -ssList(A) | -strictorderP(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | lt(C,B) | lt(B,C) # label(ax10) # label(axiom). [clausify(11)]. 0.93/1.34 Derived: -ssList(A) | ssItem(f4(A)) | -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | lt(C,B) | lt(B,C). [resolve(108,b,109,b)]. 0.93/1.34 110 -ssList(A) | strictorderP(A) | ssItem(f5(A)) # label(ax10) # label(axiom). [clausify(11)]. 0.93/1.34 Derived: -ssList(A) | ssItem(f5(A)) | -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | lt(C,B) | lt(B,C). [resolve(110,b,109,b)]. 0.93/1.34 111 -ssList(A) | strictorderP(A) | ssList(f6(A)) # label(ax10) # label(axiom). [clausify(11)]. 0.93/1.34 Derived: -ssList(A) | ssList(f6(A)) | -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | lt(C,B) | lt(B,C). [resolve(111,b,109,b)]. 0.93/1.34 112 -ssList(A) | strictorderP(A) | ssList(f7(A)) # label(ax10) # label(axiom). [clausify(11)]. 0.93/1.34 Derived: -ssList(A) | ssList(f7(A)) | -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | lt(C,B) | lt(B,C). [resolve(112,b,109,b)]. 0.93/1.34 113 -ssList(A) | strictorderP(A) | ssList(f8(A)) # label(ax10) # label(axiom). [clausify(11)]. 0.93/1.34 Derived: -ssList(A) | ssList(f8(A)) | -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | lt(C,B) | lt(B,C). [resolve(113,b,109,b)]. 0.93/1.34 114 -ssList(A) | strictorderP(A) | app(app(f6(A),cons(f4(A),f7(A))),cons(f5(A),f8(A))) = A # label(ax10) # label(axiom). [clausify(11)]. 0.93/1.34 Derived: -ssList(A) | app(app(f6(A),cons(f4(A),f7(A))),cons(f5(A),f8(A))) = A | -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | lt(C,B) | lt(B,C). [resolve(114,b,109,b)]. 0.93/1.34 115 -ssList(A) | strictorderP(A) | -lt(f5(A),f4(A)) # label(ax10) # label(axiom). [clausify(11)]. 0.93/1.34 Derived: -ssList(A) | -lt(f5(A),f4(A)) | -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | lt(C,B) | lt(B,C). [resolve(115,b,109,b)]. 0.93/1.34 116 -ssList(A) | strictorderP(A) | -lt(f4(A),f5(A)) # label(ax10) # label(axiom). [clausify(11)]. 0.93/1.34 Derived: -ssList(A) | -lt(f4(A),f5(A)) | -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | lt(C,B) | lt(B,C). [resolve(116,b,109,b)]. 0.93/1.34 117 -ssItem(A) | strictorderP(cons(A,nil)) # label(ax63) # label(axiom). [clausify(33)]. 0.93/1.34 Derived: -ssItem(A) | -ssList(cons(A,nil)) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != cons(A,nil) | lt(C,B) | lt(B,C). [resolve(117,b,109,b)]. 0.93/1.42 118 strictorderP(nil) # label(ax64) # label(axiom). [assumption]. 0.93/1.42 Derived: -ssList(nil) | -ssItem(A) | -ssItem(B) | -ssList(C) | -ssList(D) | -ssList(E) | app(app(C,cons(A,D)),cons(B,E)) != nil | lt(B,A) | lt(A,B). [resolve(118,a,109,b)]. 0.93/1.42 119 -ssList(A) | -cyclefreeP(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | -leq(B,C) | -leq(C,B) # label(ax8) # label(axiom). [clausify(30)]. 0.93/1.42 120 cyclefreeP(nil) # label(ax60) # label(axiom). [assumption]. 0.93/1.42 Derived: -ssList(nil) | -ssItem(A) | -ssItem(B) | -ssList(C) | -ssList(D) | -ssList(E) | app(app(C,cons(A,D)),cons(B,E)) != nil | -leq(A,B) | -leq(B,A). [resolve(119,b,120,a)]. 0.93/1.42 121 -ssList(A) | cyclefreeP(A) | ssItem(f13(A)) # label(ax8) # label(axiom). [clausify(30)]. 0.93/1.42 Derived: -ssList(A) | ssItem(f13(A)) | -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | -leq(B,C) | -leq(C,B). [resolve(121,b,119,b)]. 0.93/1.42 122 -ssList(A) | cyclefreeP(A) | ssItem(f14(A)) # label(ax8) # label(axiom). [clausify(30)]. 0.93/1.42 Derived: -ssList(A) | ssItem(f14(A)) | -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | -leq(B,C) | -leq(C,B). [resolve(122,b,119,b)]. 0.93/1.42 123 -ssList(A) | cyclefreeP(A) | ssList(f15(A)) # label(ax8) # label(axiom). [clausify(30)]. 0.93/1.42 Derived: -ssList(A) | ssList(f15(A)) | -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | -leq(B,C) | -leq(C,B). [resolve(123,b,119,b)]. 0.93/1.42 124 -ssList(A) | cyclefreeP(A) | ssList(f16(A)) # label(ax8) # label(axiom). [clausify(30)]. 0.93/1.42 Derived: -ssList(A) | ssList(f16(A)) | -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | -leq(B,C) | -leq(C,B). [resolve(124,b,119,b)]. 0.93/1.42 125 -ssList(A) | cyclefreeP(A) | ssList(f17(A)) # label(ax8) # label(axiom). [clausify(30)]. 0.93/1.42 Derived: -ssList(A) | ssList(f17(A)) | -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | -leq(B,C) | -leq(C,B). [resolve(125,b,119,b)]. 0.93/1.42 126 -ssList(A) | cyclefreeP(A) | app(app(f15(A),cons(f13(A),f16(A))),cons(f14(A),f17(A))) = A # label(ax8) # label(axiom). [clausify(30)]. 0.93/1.42 Derived: -ssList(A) | app(app(f15(A),cons(f13(A),f16(A))),cons(f14(A),f17(A))) = A | -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | -leq(B,C) | -leq(C,B). [resolve(126,b,119,b)]. 0.93/1.42 127 -ssList(A) | cyclefreeP(A) | leq(f13(A),f14(A)) # label(ax8) # label(axiom). [clausify(30)]. 0.93/1.42 Derived: -ssList(A) | leq(f13(A),f14(A)) | -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | -leq(B,C) | -leq(C,B). [resolve(127,b,119,b)]. 0.93/1.42 128 -ssList(A) | cyclefreeP(A) | leq(f14(A),f13(A)) # label(ax8) # label(axiom). [clausify(30)]. 0.93/1.42 Derived: -ssList(A) | leq(f14(A),f13(A)) | -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | -leq(B,C) | -leq(C,B). [resolve(128,b,119,b)]. 0.93/1.42 129 -ssItem(A) | cyclefreeP(cons(A,nil)) # label(ax59) # label(axiom). [clausify(43)]. 0.93/1.42 Derived: -ssItem(A) | -ssList(cons(A,nil)) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != cons(A,nil) | -leq(B,C) | -leq(C,B). [resolve(129,b,119,b)]. 0.93/1.42 130 -ssList(A) | -duplicatefreeP(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | C != B # label(ax13) # label(axiom). [clausify(62)]. 0.93/1.42 131 -ssItem(A) | duplicatefreeP(cons(A,nil)) # label(ax71) # label(axiom). [clausify(46)]. 0.93/1.42 Derived: -ssList(cons(A,nil)) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != cons(A,nil) | C != B | -ssItem(A). [resolve(130,b,131,b)]. 0.93/1.42 132 -ssList(A) | duplicatefreeP(A) | ssItem(f29(A)) # label(ax13) # label(axiom). [clausify(62)]. 0.93/1.42 Derived: -ssList(A) | ssItem(f29(A)) | -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | C != B. [resolve(132,b,130,b)]. 3.09/3.38 133 -ssList(A) | duplicatefreeP(A) | ssItem(f30(A)) # label(ax13) # label(axiom). [clausify(62)]. 3.09/3.38 Derived: -ssList(A) | ssItem(f30(A)) | -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | C != B. [resolve(133,b,130,b)]. 3.09/3.38 134 -ssList(A) | duplicatefreeP(A) | ssList(f31(A)) # label(ax13) # label(axiom). [clausify(62)]. 3.09/3.38 Derived: -ssList(A) | ssList(f31(A)) | -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | C != B. [resolve(134,b,130,b)]. 3.09/3.38 135 -ssList(A) | duplicatefreeP(A) | ssList(f32(A)) # label(ax13) # label(axiom). [clausify(62)]. 3.09/3.38 Derived: -ssList(A) | ssList(f32(A)) | -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | C != B. [resolve(135,b,130,b)]. 3.09/3.38 136 -ssList(A) | duplicatefreeP(A) | ssList(f33(A)) # label(ax13) # label(axiom). [clausify(62)]. 3.09/3.38 Derived: -ssList(A) | ssList(f33(A)) | -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | C != B. [resolve(136,b,130,b)]. 3.09/3.38 137 -ssList(A) | duplicatefreeP(A) | app(app(f31(A),cons(f29(A),f32(A))),cons(f30(A),f33(A))) = A # label(ax13) # label(axiom). [clausify(62)]. 3.09/3.38 Derived: -ssList(A) | app(app(f31(A),cons(f29(A),f32(A))),cons(f30(A),f33(A))) = A | -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | C != B. [resolve(137,b,130,b)]. 3.09/3.38 138 -ssList(A) | duplicatefreeP(A) | f30(A) = f29(A) # label(ax13) # label(axiom). [clausify(62)]. 3.09/3.38 Derived: -ssList(A) | f30(A) = f29(A) | -ssList(A) | -ssItem(B) | -ssItem(C) | -ssList(D) | -ssList(E) | -ssList(F) | app(app(D,cons(B,E)),cons(C,F)) != A | C != B. [resolve(138,b,130,b)]. 3.09/3.38 139 duplicatefreeP(nil) # label(ax72) # label(axiom). [assumption]. 3.09/3.38 Derived: -ssList(nil) | -ssItem(A) | -ssItem(B) | -ssList(C) | -ssList(D) | -ssList(E) | app(app(C,cons(A,D)),cons(B,E)) != nil | B != A. [resolve(139,a,130,b)]. 3.09/3.38 3.09/3.38 ============================== end predicate elimination ============= 3.09/3.38 3.09/3.38 Auto_denials: (non-Horn, no changes). 3.09/3.38 3.09/3.38 Term ordering decisions: 3.09/3.38 Function symbol KB weights: nil=1. c1=1. c2=1. c3=1. c4=1. c5=1. c6=1. c7=1. cons=1. app=1. f2=1. f3=1. f18=1. f19=1. f28=1. f34=1. hd=1. tl=1. f1=1. f4=1. f5=1. f6=1. f7=1. f8=1. f9=1. f10=1. f11=1. f12=1. f13=1. f14=1. f15=1. f16=1. f17=1. f20=1. f21=1. f22=1. f23=1. f24=1. f25=1. f26=1. f27=1. f29=1. f30=1. f31=1. f32=1. f33=1. f35=1. f36=1. f37=1. f38=1. f39=1. f40=1. f41=1. f42=1. f43=1. f44=1. f45=1. 3.09/3.38 3.09/3.38 ============================== end of process initial clauses ======== 3.09/3.38 3.09/3.38 ============================== CLAUSES FOR SEARCH ==================== 3.09/3.38 3.09/3.38 ============================== end of clauses for search ============= 3.09/3.38 3.09/3.38 ============================== SEARCH ================================ 3.09/3.38 3.09/3.38 % Starting search at 0.61 seconds. 3.09/3.38 3.09/3.38 Low Water (keep): wt=40.000, iters=3357 3.09/3.38 3.09/3.38 Low Water (keep): wt=33.000, iters=3348 3.09/3.38 3.09/3.38 Low Water (keep): wt=31.000, iters=3451 3.09/3.38 3.09/3.38 Low Water (keep): wt=29.000, iters=3477 3.09/3.38 3.09/3.38 Low Water (keep): wt=28.000, iters=3395 3.09/3.38 3.09/3.38 NOTE: Back_subsumption disabled, ratio of kept to back_subsumed is 27 (0.00 of 1.52 sec). 3.09/3.38 3.09/3.38 Low Water (keep): wt=27.000, iters=3621 3.09/3.38 3.09/3.38 Low Water (keep): wt=26.000, iters=3380 3.09/3.38 3.09/3.38 ============================== PROOF ================================= 3.09/3.38 % SZS status Theorem 3.09/3.38 % SZS output start Refutation 3.09/3.38 3.09/3.38 % Proof 1 at 2.19 (+ 0.02) seconds. 3.09/3.38 % Length of proof is 20. 3.09/3.38 % Level of proof is 5. 3.09/3.38 % Maximum clause weight is 10.000. 3.09/3.38 % Given clauses 1403. 3.09/3.38 3.09/3.38 4 (all U (ssList(U) -> (all V (ssList(V) -> (V != U <-> neq(U,V)))))) # label(ax15) # label(axiom) # label(non_clause). [assumption]. 3.09/3.38 83 (all U (ssList(U) -> (all V (ssItem(V) -> nil != cons(V,U))))) # label(ax21) # label(axiom) # label(non_clause). [assumption]. 3.09/3.38 87 -(all U (ssList(U) -> (all V (ssList(V) -> (all W (ssList(W) -> (all X (ssList(X) -> W != U | -neq(V,nil) | nil = X & W != nil | (all Y (ssItem(Y) -> W != cons(Y,nil) | -memberP(X,Y))) & neq(X,nil) | neq(U,nil) | V != X)))))))) # label(co1) # label(negated_conjecture) # label(non_clause). [assumption]. 3.09/3.38 144 -ssList(A) | -ssList(B) | B = A | neq(A,B) # label(ax15) # label(axiom). [clausify(4)]. 3.09/3.38 162 ssList(nil) # label(ax17) # label(axiom). [assumption]. 3.09/3.38 281 -ssList(A) | -ssItem(B) | cons(B,A) != nil # label(ax21) # label(axiom). [clausify(83)]. 3.09/3.38 289 ssList(c3) # label(co1) # label(negated_conjecture). [clausify(87)]. 3.09/3.38 293 c5 = c3 # label(co1) # label(negated_conjecture). [clausify(87)]. 3.09/3.38 294 neq(c4,nil) # label(co1) # label(negated_conjecture). [clausify(87)]. 3.09/3.38 297 ssItem(c7) | -neq(c6,nil) # label(co1) # label(negated_conjecture). [clausify(87)]. 3.09/3.38 298 cons(c7,nil) = c5 | -neq(c6,nil) # label(co1) # label(negated_conjecture). [clausify(87)]. 3.09/3.38 299 cons(c7,nil) = c3 | -neq(c6,nil). [copy(298),rewrite([293(4)])]. 3.09/3.38 301 -neq(c3,nil) # label(co1) # label(negated_conjecture). [clausify(87)]. 3.09/3.38 302 c6 = c4 # label(co1) # label(negated_conjecture). [clausify(87)]. 3.09/3.38 464 cons(c7,nil) = c3. [back_rewrite(299),rewrite([302(6)]),unit_del(b,294)]. 3.09/3.38 465 ssItem(c7). [back_rewrite(297),rewrite([302(3)]),unit_del(b,294)]. 3.09/3.38 1640 -ssList(A) | nil = A | neq(A,nil). [resolve(162,a,144,b)]. 3.09/3.38 4119 -ssList(A) | cons(c7,A) != nil. [resolve(465,a,281,b)]. 3.09/3.38 5953 c3 != nil. [resolve(4119,a,162,a),rewrite([464(3)])]. 3.09/3.38 7314 $F. [resolve(1640,a,289,a),flip(a),unit_del(a,5953),unit_del(b,301)]. 3.09/3.38 3.09/3.38 % SZS output end Refutation 3.09/3.38 ============================== end of proof ========================== 3.09/3.38 3.09/3.38 ============================== STATISTICS ============================ 3.09/3.38 3.09/3.38 Given=1403. Generated=23786. Kept=7116. proofs=1. 3.09/3.38 Usable=1403. Sos=5469. Demods=44. Limbo=2, Disabled=489. Hints=0. 3.09/3.38 Megabytes=11.60. 3.09/3.38 User_CPU=2.19, System_CPU=0.02, Wall_clock=2. 3.09/3.38 3.09/3.38 ============================== end of statistics ===================== 3.09/3.38 3.09/3.38 ============================== end of search ========================= 3.09/3.38 3.09/3.38 THEOREM PROVED 3.09/3.38 % SZS status Theorem 3.09/3.38 3.09/3.38 Exiting with 1 proof. 3.09/3.38 3.09/3.38 Process 11187 exit (max_proofs) Thu Jul 2 06:57:20 2020 3.09/3.38 Prover9 interrupted 3.09/3.38 EOF