TPTP Problem File: ALG276^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ALG276^5 : TPTP v7.4.0. Bugfixed v5.3.0.
% Domain : General Algebra
% Problem : TPS problem from GRP-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0641 [Bro09]
% Status : Theorem
% Rating : 0.43 v7.4.0, 0.33 v7.3.0, 0.56 v7.2.0, 0.50 v7.1.0, 0.62 v7.0.0, 0.57 v6.4.0, 0.67 v6.3.0, 0.60 v6.2.0, 0.57 v6.1.0, 0.86 v5.5.0, 1.00 v5.3.0
% Syntax : Number of formulae : 14 ( 0 unit; 7 type; 6 defn)
% Number of atoms : 70 ( 13 equality; 44 variable)
% Maximal formula depth : 11 ( 6 average)
% Number of connectives : 37 ( 0 ~; 0 |; 6 &; 30 @)
% ( 1 <=>; 0 =>; 0 <=; 0 <~>)
% ( 0 ~|; 0 ~&)
% Number of type conns : 35 ( 35 >; 0 *; 0 +; 0 <<)
% Number of symbols : 9 ( 7 :; 0 =)
% Number of variables : 21 ( 0 sgn; 8 !; 4 ?; 9 ^)
% ( 21 :; 0 !>; 0 ?*)
% ( 0 @-; 0 @+)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% Bugfixes : v5.2.0 - Added missing type declarations.
% : v5.3.0 - Fixed tType to $tType from last bugfixes.
%------------------------------------------------------------------------------
thf(g_type,type,(
g: $tType )).
thf(cGROUP1_type,type,(
cGROUP1: ( g > g > g ) > g > $o )).
thf(cGROUP4_type,type,(
cGROUP4: ( g > g > g ) > $o )).
thf(cGRP_ASSOC_type,type,(
cGRP_ASSOC: ( g > g > g ) > $o )).
thf(cGRP_DIVISORS_type,type,(
cGRP_DIVISORS: ( g > g > g ) > $o )).
thf(cGRP_INVERSE_type,type,(
cGRP_INVERSE: ( g > g > g ) > g > $o )).
thf(cGRP_UNIT_type,type,(
cGRP_UNIT: ( g > g > g ) > g > $o )).
thf(cGRP_ASSOC_def,definition,
( cGRP_ASSOC
= ( ^ [Xf: g > g > g] :
! [Xa: g,Xb: g,Xc: g] :
( ( Xf @ ( Xf @ Xa @ Xb ) @ Xc )
= ( Xf @ Xa @ ( Xf @ Xb @ Xc ) ) ) ) )).
thf(cGRP_DIVISORS_def,definition,
( cGRP_DIVISORS
= ( ^ [Xf: g > g > g] :
! [Xa: g,Xb: g] :
( ? [Xx: g] :
( ( Xf @ Xa @ Xx )
= Xb )
& ? [Xy: g] :
( ( Xf @ Xy @ Xa )
= Xb ) ) ) )).
thf(cGRP_INVERSE_def,definition,
( cGRP_INVERSE
= ( ^ [Xf: g > g > g,Xe: g] :
! [Xa: g] :
? [Xb: g] :
( ( ( Xf @ Xa @ Xb )
= Xe )
& ( ( Xf @ Xb @ Xa )
= Xe ) ) ) )).
thf(cGRP_UNIT_def,definition,
( cGRP_UNIT
= ( ^ [Xf: g > g > g,Xe: g] :
! [Xa: g] :
( ( ( Xf @ Xe @ Xa )
= Xa )
& ( ( Xf @ Xa @ Xe )
= Xa ) ) ) )).
thf(cGROUP1_def,definition,
( cGROUP1
= ( ^ [Xf: g > g > g,Xe: g] :
( ( cGRP_ASSOC @ Xf )
& ( cGRP_UNIT @ Xf @ Xe )
& ( cGRP_INVERSE @ Xf @ Xe ) ) ) )).
thf(cGROUP4_def,definition,
( cGROUP4
= ( ^ [Xf: g > g > g] :
( ( cGRP_ASSOC @ Xf )
& ( cGRP_DIVISORS @ Xf ) ) ) )).
thf(cEQUIV_01_04,conjecture,(
! [Xf: g > g > g] :
( ? [Xe: g] :
( cGROUP1 @ Xf @ Xe )
<=> ( cGROUP4 @ Xf ) ) )).
%------------------------------------------------------------------------------