TPTP Problem File: ARI694=1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ARI694=1 : TPTP v7.4.0. Released v6.3.0.
% Domain : Arithmetic
% Problem : Solve simple system of linear equations
% Version : Especial.
% English :
% Refs : [BHS07] Beckert et al. (2007), Verification of Object-Oriented
% : [Rue14] Ruemmer (2014), Email to Geoff Sutcliffe
% Source : [Rue14]
% Names : simplify19.pri [BHS07]
% : poly_simplify19.p [Rue14]
% Status : Theorem
% Rating : 0.70 v7.4.0, 0.88 v7.3.0, 0.83 v7.0.0, 0.86 v6.4.0, 1.00 v6.3.0
% Syntax : Number of formulae : 20 ( 10 unit; 10 type)
% Number of atoms : 10 ( 10 equality)
% Maximal formula depth : 2 ( 2 average)
% Number of connectives : 0 ( 0 ~; 0 |; 0 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% ( 0 ~|; 0 ~&)
% Number of type conns : 0 ( 0 >; 0 *; 0 +; 0 <<)
% Number of predicates : 12 ( 11 propositional; 0-2 arity)
% Number of functors : 18 ( 15 constant; 0-2 arity)
% Number of variables : 0 ( 0 sgn; 0 !; 0 ?)
% ( 0 :; 0 !>; 0 ?*)
% Maximal term depth : 3 ( 2 average)
% Arithmetic symbols : 8 ( 0 prd; 3 fun; 5 num; 0 var)
% SPC : TF0_THM_EQU_ARI
% Comments : KeY arithmetic regression test, http://www.key-project.org
%------------------------------------------------------------------------------
tff(x0_type,type,(
x0: $int )).
tff(x1_type,type,(
x1: $int )).
tff(x2_type,type,(
x2: $int )).
tff(x3_type,type,(
x3: $int )).
tff(x4_type,type,(
x4: $int )).
tff(x5_type,type,(
x5: $int )).
tff(x6_type,type,(
x6: $int )).
tff(x7_type,type,(
x7: $int )).
tff(x8_type,type,(
x8: $int )).
tff(x9_type,type,(
x9: $int )).
tff(eq1,axiom,(
x0 = $sum($product(5,x1),1) )).
tff(eq2,axiom,(
$product(4,x1) = $sum($product(5,x2),1) )).
tff(eq3,axiom,(
$product(4,x2) = $sum($product(5,x3),1) )).
tff(eq4,axiom,(
$product(4,x3) = $sum($product(5,x4),1) )).
tff(eq5,axiom,(
$product(4,x4) = $sum($product(5,x5),1) )).
tff(eq6,axiom,(
$product(4,x5) = $sum($product(5,x6),1) )).
tff(eq7,axiom,(
$product(4,x6) = $sum($product(5,x7),1) )).
tff(eq8,axiom,(
$product(4,x7) = $sum($product(5,x8),1) )).
tff(eq9,axiom,(
$product(4,x8) = $sum($product(5,x9),1) )).
tff(conj,conjecture,(
$remainder_t($sum(x0,4),1953125) = 0 )).
%------------------------------------------------------------------------------