TPTP Problem File: COM024^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : COM024^5 : TPTP v7.4.0. Released v4.0.0.
% Domain : Computing Theory
% Problem : TPS problem THM9
% Version : Especial.
% English : A very naive version of the recursion theorem. TM X Y is the
% output of Turing machine X on input Y, TH F is the number of a
% Turing machine that computes function F.
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0189 [Bro09]
% : THM9 [TPS]
% Status : Theorem
% Rating : 0.43 v7.4.0, 0.78 v7.2.0, 0.75 v7.1.0, 0.88 v7.0.0, 0.86 v6.4.0, 0.83 v6.3.0, 0.80 v6.2.0, 0.71 v5.5.0, 0.83 v5.4.0, 0.80 v5.3.0, 1.00 v5.2.0, 0.80 v4.1.0, 0.67 v4.0.0
% Syntax : Number of formulae : 3 ( 0 unit; 2 type; 0 defn)
% Number of atoms : 11 ( 2 equality; 5 variable)
% Maximal formula depth : 7 ( 5 average)
% Number of connectives : 6 ( 0 ~; 0 |; 0 &; 5 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% ( 0 ~|; 0 ~&)
% Number of type conns : 6 ( 6 >; 0 *; 0 +; 0 <<)
% Number of symbols : 3 ( 2 :; 0 =)
% Number of variables : 3 ( 0 sgn; 2 !; 1 ?; 0 ^)
% ( 3 :; 0 !>; 0 ?*)
% ( 0 @-; 0 @+)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% :
%------------------------------------------------------------------------------
thf(cTM,type,(
cTM: $i > $i > $i )).
thf(cTH,type,(
cTH: ( $i > $i ) > $i )).
thf(cTHM9,conjecture,
( ! [G: $i > $i] :
( ( cTM @ ( cTH @ G ) )
= G )
=> ! [F: $i > $i] :
? [N: $i] :
( ( cTM @ ( F @ N ) )
= ( cTM @ N ) ) )).
%------------------------------------------------------------------------------