## TPTP Problem File: KRS063+1.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : KRS063+1 : TPTP v7.4.0. Released v3.1.0.
% Domain   : Knowledge Representation (Semantic Web)
% Problem  : An example combining owl:oneOf and owl:inverseOf
% Version  : Especial.
% English  :

% Refs     : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
%          : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source   : [Bec03]
% Names    : inconsistent_I4.5-Manifest002 [Bec03]

% Status   : Unsatisfiable
% Rating   : 0.00 v3.1.0
% Syntax   : Number of formulae    :   27 (   9 unit)
%            Number of atoms       :   63 (  18 equality)
%            Maximal formula depth :    8 (   4 average)
%            Number of connectives :   39 (   3   ~;   5   |;  14   &)
%                                         (   4 <=>;  13  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of predicates  :   11 (   0 propositional; 1-2 arity)
%            Number of functors    :    7 (   7 constant; 0-0 arity)
%            Number of variables   :   37 (   0 sgn;  36   !;   1   ?)
%            Maximal term depth    :    1 (   1 average)
% SPC      : FOF_UNS_RFO_SEQ

% Comments : Sean Bechhofer says there are some errors in the encoding of
%            datatypes, so this problem may not be perfect. At least it's
%            still representative of the type of reasoning required for OWL.
%------------------------------------------------------------------------------
fof(cEUCountry_substitution_1,axiom,
( ! [A,B] :
( ( A = B
& cEUCountry(A) )
=> cEUCountry(B) ) )).

fof(cEuroMP_substitution_1,axiom,
( ! [A,B] :
( ( A = B
& cEuroMP(A) )
=> cEuroMP(B) ) )).

fof(cEuropeanCountry_substitution_1,axiom,
( ! [A,B] :
( ( A = B
& cEuropeanCountry(A) )
=> cEuropeanCountry(B) ) )).

fof(cPerson_substitution_1,axiom,
( ! [A,B] :
( ( A = B
& cPerson(A) )
=> cPerson(B) ) )).

fof(cowlNothing_substitution_1,axiom,
( ! [A,B] :
( ( A = B
& cowlNothing(A) )
=> cowlNothing(B) ) )).

fof(cowlThing_substitution_1,axiom,
( ! [A,B] :
( ( A = B
& cowlThing(A) )
=> cowlThing(B) ) )).

fof(rhasEuroMP_substitution_1,axiom,
( ! [A,B,C] :
( ( A = B
& rhasEuroMP(A,C) )
=> rhasEuroMP(B,C) ) )).

fof(rhasEuroMP_substitution_2,axiom,
( ! [A,B,C] :
( ( A = B
& rhasEuroMP(C,A) )
=> rhasEuroMP(C,B) ) )).

fof(risEuroMPFrom_substitution_1,axiom,
( ! [A,B,C] :
( ( A = B
& risEuroMPFrom(A,C) )
=> risEuroMPFrom(B,C) ) )).

fof(risEuroMPFrom_substitution_2,axiom,
( ! [A,B,C] :
( ( A = B
& risEuroMPFrom(C,A) )
=> risEuroMPFrom(C,B) ) )).

fof(xsd_integer_substitution_1,axiom,
( ! [A,B] :
( ( A = B
& xsd_integer(A) )
=> xsd_integer(B) ) )).

fof(xsd_string_substitution_1,axiom,
( ! [A,B] :
( ( A = B
& xsd_string(A) )
=> xsd_string(B) ) )).

%----Thing and Nothing
fof(axiom_0,axiom,
( ! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) )).

%----String and Integer disjoint
fof(axiom_1,axiom,
( ! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) )).

%----Enumeration cEUCountry
fof(axiom_2,axiom,
( ! [X] :
( cEUCountry(X)
<=> ( X = iPT
| X = iBE
| X = iNL
| X = iES
| X = iFR
| X = iUK ) ) )).

%----Equality cEuroMP
fof(axiom_3,axiom,
( ! [X] :
( cEuroMP(X)
<=> ? [Y] :
( risEuroMPFrom(X,Y)
& cowlThing(Y) ) ) )).

%----Domain: rhasEuroMP
fof(axiom_4,axiom,
( ! [X,Y] :
( rhasEuroMP(X,Y)
=> cEUCountry(X) ) )).

%----Inverse: risEuroMPFrom
fof(axiom_5,axiom,
( ! [X,Y] :
( risEuroMPFrom(X,Y)
<=> rhasEuroMP(Y,X) ) )).

%----iBE
fof(axiom_6,axiom,
( cEuropeanCountry(iBE) )).

%----iES
fof(axiom_7,axiom,
( cEuropeanCountry(iES) )).

%----iFR
fof(axiom_8,axiom,
( cEuropeanCountry(iFR) )).

%----iKinnock
fof(axiom_9,axiom,
( cPerson(iKinnock) )).

%----iKinnock
fof(axiom_10,axiom,
( ~ cEuroMP(iKinnock) )).

%----iNL
fof(axiom_11,axiom,
( cEuropeanCountry(iNL) )).

%----iPT
fof(axiom_12,axiom,
( cEuropeanCountry(iPT) )).

%----iUK
fof(axiom_13,axiom,
( cEuropeanCountry(iUK) )).

fof(axiom_14,axiom,
( rhasEuroMP(iUK,iKinnock) )).

%------------------------------------------------------------------------------
```