TPTP Problem File: PLA032^7.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : PLA032^7 : TPTP v7.3.0. Released v5.5.0.
% Domain   : Planning
% Problem  : Abductive planning: Bomb-in-the-toilet with detector
% Version  : [Ben12] axioms.
% English  :

% Refs     : [Sto00] Stone (2000), Towards a Computational Account of Knowl
%          : [Ben12] Benzmueller (2012), Email to Geoff Sutcliffe
% Source   : [Ben12]
% Names    : s4-cumul-APM004+1 [Ben12]

% Status   : Theorem
% Rating   : 0.11 v7.2.0, 0.00 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.14 v5.5.0
% Syntax   : Number of formulae    :   79 (   0 unit;  39 type;  32 defn)
%            Number of atoms       :  292 (  36 equality; 153 variable)
%            Maximal formula depth :   13 (   6 average)
%            Number of connectives :  185 (   5   ~;   5   |;   9   &; 156   @)
%                                         (   0 <=>;  10  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :  186 ( 186   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   43 (  39   :;   0   =)
%            Number of variables   :   97 (   2 sgn;  34   !;   7   ?;  56   ^)
%                                         (  97   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_THM_EQU_NAR

%------------------------------------------------------------------------------
%----Include axioms for Modal logic S4 under cumulative domains
include('Axioms/LCL015^0.ax').
include('Axioms/LCL013^5.ax').
include('Axioms/LCL015^1.ax').
%------------------------------------------------------------------------------
thf(defused_type,type,(
defused: mu > \$i > \$o )).

thf(h_type,type,(
h: mu > \$i > \$o )).

thf(bomb_type,type,(
bomb: mu > \$i > \$o )).

thf(ax1,axiom,
( mvalid
@ ( mbox_s4
@ ( mexists_ind
@ ^ [B: mu] :
( bomb @ B ) ) ) )).

thf(ax2,axiom,
( mvalid
@ ( mexists_ind
@ ^ [A: mu] :
( mbox_s4
@ ( mforall_ind
@ ^ [X: mu] :
( mimplies @ ( mand @ ( bomb @ X ) @ ( h @ A ) ) @ ( mbox_s4 @ ( bomb @ X ) ) ) ) ) ) )).

thf(ax3,axiom,
( mvalid
@ ( mbox_s4
@ ( mforall_ind
@ ^ [X: mu] :
( mexists_ind
@ ^ [D: mu] :
( mbox_s4 @ ( mimplies @ ( mand @ ( bomb @ X ) @ ( h @ D ) ) @ ( defused @ X ) ) ) ) ) ) )).

thf(con,conjecture,
( mvalid
@ ( mbox_s4
@ ( mforall_ind
@ ^ [X: mu] :
( mexists_ind
@ ^ [D: mu] :
( mimplies @ ( mand @ ( bomb @ X ) @ ( h @ D ) ) @ ( defused @ X ) ) ) ) ) )).

%------------------------------------------------------------------------------
```