TPTP Problem File: SEU475^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU475^1 : TPTP v7.4.0. Bugfixed v3.7.0.
% Domain : Set Theory (Binary relations)
% Problem : Not swapping symmetric closure and transitive closure
% Version : [Nei08] axioms.
% English : Taking the symmetric closure of the transitive closure is NOT the
% same as taking the transitive closure of the symmetric closure.
% Refs : [BN99] Baader & Nipkow (1999), Term Rewriting and All That
% : [Nei08] Neis (2008), Email to Geoff Sutcliffe
% Source : [Nei08]
% Names :
% Status : Theorem
% Rating : 0.86 v7.4.0, 0.89 v7.2.0, 0.88 v7.0.0, 1.00 v3.7.0
% Syntax : Number of formulae : 60 ( 0 unit; 29 type; 29 defn)
% Number of atoms : 265 ( 37 equality; 166 variable)
% Maximal formula depth : 12 ( 7 average)
% Number of connectives : 168 ( 8 ~; 4 |; 14 &; 126 @)
% ( 0 <=>; 16 =>; 0 <=; 0 <~>)
% ( 0 ~|; 0 ~&)
% Number of type conns : 199 ( 199 >; 0 *; 0 +; 0 <<)
% Number of symbols : 31 ( 29 :; 0 =)
% Number of variables : 90 ( 0 sgn; 39 !; 8 ?; 43 ^)
% ( 90 :; 0 !>; 0 ?*)
% ( 0 @-; 0 @+)
% SPC : TH0_THM_EQU_NAR
% Comments : Some proofs can be found in chapter 2 of [BN99]
% :
% Bugfixes : v3.7.0 - Added extra hypothesis three_individuals
%------------------------------------------------------------------------------
%----Include axioms of binary relations
include('Axioms/SET009^0.ax').
%------------------------------------------------------------------------------
thf(three_individuals,hypothesis,(
? [X: $i,Y: $i,Z: $i] :
( ( X != Y )
& ( X != Z )
& ( Y != Z ) ) )).
thf(composing_symmetric_closure_and_transitive_closure,conjecture,(
~ ( ! [R: $i > $i > $o] :
( ( sc @ ( tc @ R ) )
= ( tc @ ( sc @ R ) ) ) ) )).
%------------------------------------------------------------------------------