TPTP Problem File: SEU708^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU708^2 : TPTP v7.4.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Conditionals
% Version : Especial > Reduced > Especial.
% English : (! A:i.! phi:o.! x:i.in x A -> (! y:i.in y A -> ~phi ->
% if A phi x y = y))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC210l [Bro08]
% Status : Theorem
% Rating : 0.43 v7.4.0, 0.22 v7.2.0, 0.25 v7.1.0, 0.38 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.43 v6.1.0, 0.29 v6.0.0, 0.43 v5.5.0, 0.33 v5.4.0, 0.40 v5.3.0, 0.60 v5.2.0, 0.40 v4.1.0, 0.33 v4.0.0, 0.67 v3.7.0
% Syntax : Number of formulae : 13 ( 0 unit; 8 type; 4 defn)
% Number of atoms : 81 ( 12 equality; 46 variable)
% Maximal formula depth : 16 ( 7 average)
% Number of connectives : 57 ( 5 ~; 3 |; 6 &; 30 @)
% ( 0 <=>; 13 =>; 0 <=; 0 <~>)
% ( 0 ~|; 0 ~&)
% Number of type conns : 11 ( 11 >; 0 *; 0 +; 0 <<)
% Number of symbols : 10 ( 8 :; 0 =)
% Number of variables : 21 ( 0 sgn; 14 !; 0 ?; 7 ^)
% ( 21 :; 0 !>; 0 ?*)
% ( 0 @-; 0 @+)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=264
% :
%------------------------------------------------------------------------------
thf(in_type,type,(
in: $i > $i > $o )).
thf(setunion_type,type,(
setunion: $i > $i )).
thf(dsetconstr_type,type,(
dsetconstr: $i > ( $i > $o ) > $i )).
thf(singleton_type,type,(
singleton: $i > $o )).
thf(iffalseProp1_type,type,(
iffalseProp1: $o )).
thf(iffalseProp1,definition,
( iffalseProp1
= ( ! [A: $i,Xphi: $o,Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( ~ ( Xphi )
=> ( in @ Xy
@ ( dsetconstr @ A
@ ^ [Xz: $i] :
( ( Xphi
& ( Xz = Xx ) )
| ( ~ ( Xphi )
& ( Xz = Xy ) ) ) ) ) ) ) ) ) )).
thf(ifSingleton_type,type,(
ifSingleton: $o )).
thf(ifSingleton,definition,
( ifSingleton
= ( ! [A: $i,Xphi: $o,Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( singleton
@ ( dsetconstr @ A
@ ^ [Xz: $i] :
( ( Xphi
& ( Xz = Xx ) )
| ( ~ ( Xphi )
& ( Xz = Xy ) ) ) ) ) ) ) ) )).
thf(if_type,type,(
if: $i > $o > $i > $i > $i )).
thf(if,definition,
( if
= ( ^ [A: $i,Xphi: $o,Xx: $i,Xy: $i] :
( setunion
@ ( dsetconstr @ A
@ ^ [Xz: $i] :
( ( Xphi
& ( Xz = Xx ) )
| ( ~ ( Xphi )
& ( Xz = Xy ) ) ) ) ) ) )).
thf(theeq_type,type,(
theeq: $o )).
thf(theeq,definition,
( theeq
= ( ! [X: $i] :
( ( singleton @ X )
=> ! [Xx: $i] :
( ( in @ Xx @ X )
=> ( ( setunion @ X )
= Xx ) ) ) ) )).
thf(iffalse,conjecture,
( iffalseProp1
=> ( ifSingleton
=> ( theeq
=> ! [A: $i,Xphi: $o,Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( ~ ( Xphi )
=> ( ( if @ A @ Xphi @ Xx @ Xy )
= Xy ) ) ) ) ) ) )).
%------------------------------------------------------------------------------