TPTP Problem File: SEV021^6.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV021^6 : TPTP v7.4.0. Released v5.5.0.
% Domain : Set Theory (Relations)
% Problem : TPS problem from EQUIVALENCE-RELATIONS-THMS
% Version : Especial.
% English :
% Refs : [Sul12] Sultana (2012), Email to Geoff Sutcliffe
% Source : [Sul12]
% Names :
% Status : Theorem
% Rating : 0.57 v7.4.0, 0.89 v7.2.0, 0.88 v7.0.0, 1.00 v6.3.0, 0.80 v6.2.0, 0.86 v6.1.0, 1.00 v5.5.0
% Syntax : Number of formulae : 5 ( 0 unit; 3 type; 1 defn)
% Number of atoms : 46 ( 3 equality; 33 variable)
% Maximal formula depth : 15 ( 7 average)
% Number of connectives : 38 ( 0 ~; 0 |; 11 &; 20 @)
% ( 1 <=>; 6 =>; 0 <=; 0 <~>)
% ( 0 ~|; 0 ~&)
% Number of type conns : 12 ( 12 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 3 :; 0 =)
% Number of variables : 17 ( 0 sgn; 10 !; 4 ?; 3 ^)
% ( 17 :; 0 !>; 0 ?*)
% ( 0 @-; 0 @+)
% SPC : TH0_THM_EQU_NAR
% Comments : .
% : The conjecture is of the form A => B, where A is not needed to
% prove B. A is an easily provable property of equality.
% : This version has the relation Q instantiated.
%------------------------------------------------------------------------------
thf(a_type,type,(
a: $tType )).
thf(cP,type,(
cP: ( a > $o ) > $o )).
thf(cQ,type,(
cQ: a > a > $o )).
thf(cQ_def,definition,
( cQ
= ( ^ [X: a,Y: a] :
? [S: a > $o] :
( ( cP @ S )
& ( S @ X )
& ( S @ Y ) ) ) )).
thf(cTHM262_D_EXT2_pme,conjecture,
( ! [Xq1: a > $o,Xq2: a > $o] :
( ( ( Xq1 = Xq2 )
& ( cP @ Xq1 ) )
=> ( cP @ Xq2 ) )
=> ( ( ! [Xp: a > $o] :
( ( cP @ Xp )
=> ? [Xz: a] :
( Xp @ Xz ) )
& ! [Xx: a] :
? [Xp: a > $o] :
( ( cP @ Xp )
& ( Xp @ Xx ) )
& ! [Xx: a,Xy: a,Xp: a > $o,Xq: a > $o] :
( ( ( cP @ Xp )
& ( cP @ Xq )
& ( Xp @ Xx )
& ( Xq @ Xx )
& ( Xp @ Xy ) )
=> ( Xq @ Xy ) ) )
=> ( ( ^ [Xs: a > $o] :
( ? [Xz: a] :
( Xs @ Xz )
& ! [Xx: a] :
( ( Xs @ Xx )
=> ! [Xy: a] :
( ( Xs @ Xy )
<=> ( cQ @ Xx @ Xy ) ) ) ) )
= cP ) ) )).
%------------------------------------------------------------------------------