TPTP Problem File: SYO067^4.002.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO067^4.002 : TPTP v7.4.0. Released v4.0.0.
% Domain : Logic Calculi (Intuitionistic logic)
% Problem : ILTP Problem SYJ203+1.002
% Version : [Goe33] axioms.
% English :
% Refs : [Goe33] Goedel (1933), An Interpretation of the Intuitionistic
% : [Gol06] Goldblatt (2006), Mathematical Modal Logic: A View of
% : [ROK06] Raths et al. (2006), The ILTP Problem Library for Intu
% : [Ben09] Benzmueller (2009), Email to Geoff Sutcliffe
% : [BP10] Benzmueller & Paulson (2009), Exploring Properties of
% Source : [Ben09]
% Names : SYJ203+1.002 [ROK06]
% Status : Theorem
% Rating : 0.71 v7.4.0, 0.78 v7.2.0, 0.75 v7.1.0, 0.88 v7.0.0, 0.86 v6.4.0, 0.83 v6.3.0, 0.80 v6.2.0, 1.00 v6.1.0, 0.86 v5.5.0, 1.00 v4.0.0
% Syntax : Number of formulae : 46 ( 0 unit; 23 type; 19 defn)
% Number of atoms : 135 ( 19 equality; 48 variable)
% Maximal formula depth : 10 ( 5 average)
% Number of connectives : 77 ( 3 ~; 1 |; 2 &; 69 @)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% ( 0 ~|; 0 ~&)
% Number of type conns : 98 ( 98 >; 0 *; 0 +; 0 <<)
% Number of symbols : 26 ( 23 :; 0 =)
% Number of variables : 40 ( 1 sgn; 7 !; 2 ?; 31 ^)
% ( 40 :; 0 !>; 0 ?*)
% ( 0 @-; 0 @+)
% SPC : TH0_THM_EQU_NAR
% Comments : This is an ILTP problem embedded in TH0
%------------------------------------------------------------------------------
include('Axioms/LCL010^0.ax').
%------------------------------------------------------------------------------
thf(f_type,type,(
f: $i > $o )).
thf(p1_type,type,(
p1: $i > $o )).
thf(p2_type,type,(
p2: $i > $o )).
thf(axiom1,axiom,
( ivalid @ ( iimplies @ ( ior @ ( iand @ ( iatom @ p1 ) @ ( iatom @ p2 ) ) @ ( ior @ ( iimplies @ ( iatom @ p1 ) @ ( iatom @ f ) ) @ ( iimplies @ ( iatom @ p2 ) @ ( iatom @ f ) ) ) ) @ ( iatom @ f ) ) )).
thf(con,conjecture,
( ivalid @ ( iatom @ f ) )).
%------------------------------------------------------------------------------