TPTP Problem File: SYO542^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO542^1 : TPTP v7.4.0. Released v5.2.0.
% Domain : Syntactic
% Problem : If-then-else on $i>$i defined from choice on $i>$i
% Version : Especial.
% English : A choice operator on ($i>$i) is used to define an if-then-else
% operator at ($i>$i). Check that it always returns the then-part
% or the else-part.
% Refs : [Bro11] Brown E. (2011), Email to Geoff Sutcliffe
% Source : [Bro11]
% Names : CHOICE16b [Bro11]
% Status : Theorem
% Rating : 0.29 v7.4.0, 0.33 v7.2.0, 0.25 v7.1.0, 0.38 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.57 v6.1.0, 0.43 v5.5.0, 0.33 v5.4.0, 0.40 v5.2.0
% Syntax : Number of formulae : 5 ( 0 unit; 2 type; 1 defn)
% Number of atoms : 28 ( 5 equality; 18 variable)
% Maximal formula depth : 10 ( 7 average)
% Number of connectives : 16 ( 1 ~; 2 |; 2 &; 10 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% ( 0 ~|; 0 ~&)
% Number of type conns : 18 ( 18 >; 0 *; 0 +; 0 <<)
% Number of symbols : 4 ( 2 :; 0 =)
% Number of variables : 9 ( 0 sgn; 4 !; 1 ?; 4 ^)
% ( 9 :; 0 !>; 0 ?*)
% ( 0 @-; 0 @+)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(epsii,type,(
epsii: ( ( $i > $i ) > $o ) > $i > $i )).
thf(choiceaxii,axiom,(
! [P: ( $i > $i ) > $o] :
( ? [X: $i > $i] :
( P @ X )
=> ( P @ ( epsii @ P ) ) ) )).
thf(if,type,(
if: $o > ( $i > $i ) > ( $i > $i ) > $i > $i )).
thf(ifd,definition,
( if
= ( ^ [B: $o,X: $i > $i,Y: $i > $i] :
( epsii
@ ^ [Z: $i > $i] :
( ( B
& ( Z = X ) )
| ( ~ ( B )
& ( Z = Y ) ) ) ) ) )).
thf(conj,conjecture,(
! [B: $o,X: $i > $i,Y: $i > $i] :
( ( ( if @ B @ X @ Y )
= X )
| ( ( if @ B @ X @ Y )
= Y ) ) )).
%------------------------------------------------------------------------------