TPTP Problem File: SYO559^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO559^1 : TPTP v7.4.0. Released v5.2.0.
% Domain : Syntactic
% Problem : Choice on $o>$o applied to choice on $o cannot be negatio
% Version : Especial.
% English :
% Refs : [Bro11] Brown (2011), Email to Geoff Sutcliffe
% Source : [Bro11]
% Names : CHOICE31 [Bro11]
% Status : Theorem
% Rating : 0.33 v7.4.0, 0.22 v7.3.0, 0.20 v7.2.0, 0.25 v7.1.0, 0.29 v7.0.0, 0.25 v6.4.0, 0.29 v6.3.0, 0.33 v6.2.0, 0.50 v6.0.0, 0.33 v5.5.0, 0.40 v5.4.0, 0.75 v5.2.0
% Syntax : Number of formulae : 5 ( 0 unit; 2 type; 0 defn)
% Number of atoms : 16 ( 0 equality; 8 variable)
% Maximal formula depth : 5 ( 5 average)
% Number of connectives : 13 ( 0 ~; 0 |; 0 &; 10 @)
% ( 0 <=>; 3 =>; 0 <=; 0 <~>)
% ( 0 ~|; 0 ~&)
% Number of type conns : 10 ( 10 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 2 :; 0 =)
% Number of variables : 4 ( 0 sgn; 2 !; 2 ?; 0 ^)
% ( 4 :; 0 !>; 0 ?*)
% ( 0 @-; 0 @+)
% SPC : TH0_THM_NEQ_NAR
% Comments : Assume epso and epsoo are choice operators on $o and $o>$o,
% respectively. epso can also be viewed as a predicate on $o>$o,
% so we can apply epsoo to epso. The term (epsoo @ epso) is of
% type $o>$o. This function is such that if it is true for $false,
% then it is true for $true. Proof Sketch: If the conjecture were
% not true, then (epsoo @ epso) would be the negation function.
% However, negation is the only function $o>$o for which we are
% certain epso returns $false.
%------------------------------------------------------------------------------
thf(epso,type,(
epso: ( $o > $o ) > $o )).
thf(choiceaxo,axiom,(
! [P: $o > $o] :
( ? [X: $o] :
( P @ X )
=> ( P @ ( epso @ P ) ) ) )).
thf(epsoo,type,(
epsoo: ( ( $o > $o ) > $o ) > $o > $o )).
thf(choiceaxoo,axiom,(
! [P: ( $o > $o ) > $o] :
( ? [X: $o > $o] :
( P @ X )
=> ( P @ ( epsoo @ P ) ) ) )).
thf(c,conjecture,
( ( epsoo @ epso @ $false )
=> ( epsoo @ epso @ $true ) )).
%------------------------------------------------------------------------------