TPTP Problem File: SYO605+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO605+1 : TPTP v7.4.0. Released v7.0.0.
% Domain : Syntactic
% Problem : RM3 problem 4
% Version : Especial.
% English :
% Refs : [Pel16] Pelletier (2016), Email to Geoff Sutcliffe
% : [PSH17] Pelletier et al. (2017), Automated Reasoning for the D
% Source : [Pel16]
% Names : 18 [PSH17]
% : n04.p [Pel16]
% Status : Theorem
% Rating : 0.29 v7.4.0, 0.06 v7.3.0, 0.14 v7.2.0, 0.17 v7.1.0, 0.25 v7.0.0
% Syntax : Number of formulae : 5 ( 0 unit)
% Number of atoms : 69 ( 0 equality)
% Maximal formula depth : 16 ( 8 average)
% Number of connectives : 71 ( 7 ~; 31 |; 30 &)
% ( 3 <=>; 0 =>; 0 <=; 0 <~>)
% ( 0 ~|; 0 ~&)
% Number of predicates : 5 ( 0 propositional; 2-2 arity)
% Number of functors : 0 ( 0 constant; --- arity)
% Number of variables : 27 ( 0 sgn; 13 !; 14 ?)
% Maximal term depth : 1 ( 1 average)
% SPC : FOF_THM_RFO_NEQ
% Comments : Translated from RM3 using the truth evaluation approach [PSH17].
%------------------------------------------------------------------------------
fof(nc4,conjecture,
( ! [A] :
? [B] :
( ( g_true_only(B,A)
& ( g_both(B,B)
| g_false_only(B,B) ) )
| ( g_both(B,A)
& ( g_true_only(B,B)
| g_false_only(B,B) ) )
| ( g_false_only(B,A)
& ( g_true_only(B,B)
| g_both(B,B) ) ) )
| ? [B] :
! [A] :
? [C] :
( ( g_true_only(C,A)
& ( g_both(C,B)
| g_true_only(C,B) ) )
| ( g_both(C,A)
& ( g_false_only(C,B)
| g_true_only(C,B) ) )
| ( g_false_only(C,A)
& ( g_false_only(C,B)
| g_both(C,B) ) ) )
| ( ? [A] :
( ? [B] :
( g_both(B,A)
& g_both(B,B) )
& ~ ? [B] :
( ( g_true_only(B,A)
& ( g_both(B,B)
| g_false_only(B,B) ) )
| ( g_both(B,A)
& ( g_true_only(B,B)
| g_false_only(B,B) ) )
| ( g_false_only(B,A)
& ( g_true_only(B,B)
| g_both(B,B) ) ) ) )
& ~ ? [A] :
! [B] :
( ( g_true_only(B,A)
& g_true_only(B,B) )
| ( g_false_only(B,A)
& g_false_only(B,B) ) )
& ? [B] :
( ? [A] :
( ? [C] :
( g_both(C,A)
& g_both(C,B) )
& ~ ? [C] :
( ( g_true_only(C,A)
& ( g_both(C,B)
| g_true_only(C,B) ) )
| ( g_both(C,A)
& ( g_false_only(C,B)
| g_true_only(C,B) ) )
| ( g_false_only(C,A)
& ( g_false_only(C,B)
| g_both(C,B) ) ) ) )
& ~ ? [A] :
! [C] :
( ( g_true_only(C,A)
& g_false_only(C,B) )
| ( g_false_only(C,A)
& g_true_only(C,B) ) ) )
& ~ ? [B] :
! [A] :
? [C] :
( ( g_true_only(C,A)
& ( g_both(C,B)
| g_true_only(C,B) ) )
| ( g_both(C,A)
& ( g_false_only(C,B)
| g_true_only(C,B) ) )
| ( g_false_only(C,A)
& ( g_false_only(C,B)
| g_both(C,B) ) ) ) ) )).
fof(true_only_g,axiom,(
! [X_2,X_1] :
( g_true_only(X_2,X_1)
<=> ( g_true(X_2,X_1)
& ~ g_false(X_2,X_1) ) ) )).
fof(both_g,axiom,(
! [X_2,X_1] :
( g_both(X_2,X_1)
<=> ( g_true(X_2,X_1)
& g_false(X_2,X_1) ) ) )).
fof(false_only_g,axiom,(
! [X_2,X_1] :
( g_false_only(X_2,X_1)
<=> ( g_false(X_2,X_1)
& ~ g_true(X_2,X_1) ) ) )).
fof(exhaustion_g,axiom,(
! [X_2,X_1] :
( g_true_only(X_2,X_1)
| g_both(X_2,X_1)
| g_false_only(X_2,X_1) ) )).
%------------------------------------------------------------------------------