# Entrants' Sample Solutions

## Beagle 0.9.47

Peter Baumgartner
Data61, Australia

## CSE 1.6

Feng Cao
JiangXi University of Science and Technology, China

### Sample solution for SEU140+2

% SZS status Theorem for SEU140+2
% SZS output start Proof
%ClaNum:116(EqnAxiom:34)
%VarNum:417(SingletonVarNum:163)
%MaxLitNum:4
%MaxfuncDepth:2
%SharedTerms:12
%goalClause: 37 38 55
%singleGoalClaCount:3
[35]P1(a1)
[36]P1(a2)
[37]P3(a3,a5)
[38]P2(a5,a6)
[54]~P1(a13)
[55]~P2(a3,a6)
[40]P3(a1,x401)
[43]P3(x431,x431)
[56]~P4(x561,x561)
[39]E(f12(a1,x391),a1)
[41]E(f16(x411,a1),x411)
[42]E(f12(x421,a1),x421)
[44]E(f16(x441,x441),x441)
[46]E(f12(x461,f12(x461,a1)),a1)
[49]E(f12(x491,f12(x491,x491)),x491)
[45]E(f16(x451,x452),f16(x452,x451))
[47]P3(x471,f16(x471,x472))
[48]P3(f12(x481,x482),x481)
[50]E(f16(x501,f12(x502,x501)),f16(x501,x502))
[51]E(f12(f16(x511,x512),x512),f12(x511,x512))
[52]E(f12(x521,f12(x521,x522)),f12(x522,f12(x522,x521)))
[57]~P1(x571)+E(x571,a1)
[61]~P3(x611,a1)+E(x611,a1)
[62]P5(f7(x621),x621)+E(x621,a1)
[60]~E(x601,x602)+P3(x601,x602)
[63]~P5(x632,x631)+~E(x631,a1)
[64]~P4(x641,x642)+~E(x641,x642)
[65]~P1(x651)+~P5(x652,x651)
[70]~P4(x701,x702)+P3(x701,x702)
[71]~P2(x712,x711)+P2(x711,x712)
[74]~P5(x742,x741)+~P5(x741,x742)
[75]~P4(x752,x751)+~P4(x751,x752)
[76]~P3(x762,x761)+~P4(x761,x762)
[67]~P3(x671,x672)+E(f12(x671,x672),a1)
[69]P3(x691,x692)+~E(f12(x691,x692),a1)
[72]~P3(x721,x722)+E(f16(x721,x722),x722)
[78]P1(x781)+~P1(f16(x782,x781))
[79]P1(x791)+~P1(f16(x791,x792))
[80]P3(x801,x802)+P5(f8(x801,x802),x801)
[81]P2(x811,x812)+P5(f14(x811,x812),x812)
[82]P2(x821,x822)+P5(f14(x821,x822),x821)
[96]P3(x961,x962)+~P5(f8(x961,x962),x962)
[88]~P2(x881,x882)+E(f12(x881,f12(x881,x882)),a1)
[89]~P3(x891,x892)+E(f16(x891,f12(x892,x891)),x892)
[90]~P3(x901,x902)+E(f12(x901,f12(x901,x902)),x901)
[95]P2(x951,x952)+~E(f12(x951,f12(x951,x952)),a1)
[104]P2(x1041,x1042)+P5(f4(x1041,x1042),f12(x1041,f12(x1041,x1042)))
[99]~P3(x991,x993)+P3(f12(x991,x992),f12(x993,x992))
[106]~P2(x1061,x1062)+~P5(x1063,f12(x1061,f12(x1061,x1062)))
[107]~P3(x1071,x1073)+P3(f12(x1071,f12(x1071,x1072)),f12(x1073,f12(x1073,x1072)))
[58]~P1(x582)+~P1(x581)+E(x581,x582)
[73]P4(x731,x732)+~P3(x731,x732)+E(x731,x732)
[77]~P3(x772,x771)+~P3(x771,x772)+E(x771,x772)
[97]E(x971,x972)+P5(f15(x971,x972),x972)+P5(f15(x971,x972),x971)
[103]E(x1031,x1032)+~P5(f15(x1031,x1032),x1032)+~P5(f15(x1031,x1032),x1031)
[83]~P3(x833,x832)+P5(x831,x832)+~P5(x831,x833)
[84]~P3(x841,x843)+P3(x841,x842)+~P3(x843,x842)
[91]~P2(x913,x912)+~P5(x911,x912)+~P5(x911,x913)
[98]~P3(x982,x983)+~P3(x981,x983)+P3(f16(x981,x982),x983)
[108]P5(f10(x1082,x1083,x1081),x1081)+P5(f10(x1082,x1083,x1081),x1082)+E(x1081,f12(x1082,x1083))
[111]P5(f10(x1112,x1113,x1111),x1111)+~P5(f10(x1112,x1113,x1111),x1113)+E(x1111,f12(x1112,x1113))
[113]~P5(f9(x1132,x1133,x1131),x1131)+~P5(f9(x1132,x1133,x1131),x1133)+E(x1131,f16(x1132,x1133))
[114]~P5(f9(x1142,x1143,x1141),x1141)+~P5(f9(x1142,x1143,x1141),x1142)+E(x1141,f16(x1142,x1143))
[105]~P3(x1051,x1053)+~P3(x1051,x1052)+P3(x1051,f12(x1052,f12(x1052,x1053)))
[109]P5(f11(x1092,x1093,x1091),x1091)+P5(f11(x1092,x1093,x1091),x1093)+E(x1091,f12(x1092,f12(x1092,x1093)))
[110]P5(f11(x1102,x1103,x1101),x1101)+P5(f11(x1102,x1103,x1101),x1102)+E(x1101,f12(x1102,f12(x1102,x1103)))
[85]~P5(x851,x854)+P5(x851,x852)+~E(x852,f16(x853,x854))
[86]~P5(x861,x863)+P5(x861,x862)+~E(x862,f16(x863,x864))
[87]~P5(x871,x873)+P5(x871,x872)+~E(x873,f12(x872,x874))
[92]~P5(x924,x923)+~P5(x924,x921)+~E(x921,f12(x922,x923))
[100]~P5(x1001,x1003)+P5(x1001,x1002)+~E(x1003,f12(x1004,f12(x1004,x1002)))
[112]P5(f9(x1122,x1123,x1121),x1121)+P5(f9(x1122,x1123,x1121),x1123)+P5(f9(x1122,x1123,x1121),x1122)+E(x1121,f16(x1122,x1123))
[115]P5(f10(x1152,x1153,x1151),x1153)+~P5(f10(x1152,x1153,x1151),x1151)+~P5(f10(x1152,x1153,x1151),x1152)+E(x1151,f12(x1152,x1153))
[116]~P5(f11(x1162,x1163,x1161),x1161)+~P5(f11(x1162,x1163,x1161),x1163)+~P5(f11(x1162,x1163,x1161),x1162)+E(x1161,f12(x1162,f12(x1162,x1163)))
[93]~P5(x931,x934)+P5(x931,x932)+P5(x931,x933)+~E(x932,f12(x934,x933))
[94]~P5(x941,x944)+P5(x941,x942)+P5(x941,x943)+~E(x944,f16(x943,x942))
[102]~P5(x1021,x1024)+~P5(x1021,x1023)+P5(x1021,x1022)+~E(x1022,f12(x1023,f12(x1023,x1024)))
%EqnAxiom
[1]E(x11,x11)
[2]E(x22,x21)+~E(x21,x22)
[3]E(x31,x33)+~E(x31,x32)+~E(x32,x33)
[4]~E(x41,x42)+E(f12(x41,x43),f12(x42,x43))
[5]~E(x51,x52)+E(f12(x53,x51),f12(x53,x52))
[6]~E(x61,x62)+E(f16(x61,x63),f16(x62,x63))
[7]~E(x71,x72)+E(f16(x73,x71),f16(x73,x72))
[8]~E(x81,x82)+E(f11(x81,x83,x84),f11(x82,x83,x84))
[9]~E(x91,x92)+E(f11(x93,x91,x94),f11(x93,x92,x94))
[10]~E(x101,x102)+E(f11(x103,x104,x101),f11(x103,x104,x102))
[11]~E(x111,x112)+E(f15(x111,x113),f15(x112,x113))
[12]~E(x121,x122)+E(f15(x123,x121),f15(x123,x122))
[13]~E(x131,x132)+E(f8(x131,x133),f8(x132,x133))
[14]~E(x141,x142)+E(f8(x143,x141),f8(x143,x142))
[15]~E(x151,x152)+E(f10(x151,x153,x154),f10(x152,x153,x154))
[16]~E(x161,x162)+E(f10(x163,x161,x164),f10(x163,x162,x164))
[17]~E(x171,x172)+E(f10(x173,x174,x171),f10(x173,x174,x172))
[18]~E(x181,x182)+E(f9(x181,x183,x184),f9(x182,x183,x184))
[19]~E(x191,x192)+E(f9(x193,x191,x194),f9(x193,x192,x194))
[20]~E(x201,x202)+E(f9(x203,x204,x201),f9(x203,x204,x202))
[21]~E(x211,x212)+E(f14(x211,x213),f14(x212,x213))
[22]~E(x221,x222)+E(f14(x223,x221),f14(x223,x222))
[23]~E(x231,x232)+E(f4(x231,x233),f4(x232,x233))
[24]~E(x241,x242)+E(f4(x243,x241),f4(x243,x242))
[25]~E(x251,x252)+E(f7(x251),f7(x252))
[26]~P1(x261)+P1(x262)+~E(x261,x262)
[27]P5(x272,x273)+~E(x271,x272)+~P5(x271,x273)
[28]P5(x283,x282)+~E(x281,x282)+~P5(x283,x281)
[29]P3(x292,x293)+~E(x291,x292)+~P3(x291,x293)
[30]P3(x303,x302)+~E(x301,x302)+~P3(x303,x301)
[31]P2(x312,x313)+~E(x311,x312)+~P2(x311,x313)
[32]P2(x323,x322)+~E(x321,x322)+~P2(x323,x321)
[33]P4(x332,x333)+~E(x331,x332)+~P4(x331,x333)
[34]P4(x343,x342)+~E(x341,x342)+~P4(x343,x341)

%-------------------------------------------
cnf(124,plain,
(~P5(x1241,f16(a1,a1))),
inference(scs_inference,[],[55,35,44,2,71,65,64,63])).
cnf(125,plain,
(E(f16(x1251,x1251),x1251)),
inference(rename_variables,[],[44])).
cnf(139,plain,
(P3(f16(a1,a1),x1391)),
inference(scs_inference,[],[43,40,38,55,35,44,125,46,2,71,65,64,63,82,81,69,95,32,31,30,29])).
cnf(141,plain,
(E(f16(x1411,x1411),x1411)),
inference(rename_variables,[],[44])).
cnf(142,plain,
(~E(f16(a1,a1),f16(a6,a6))),
inference(scs_inference,[],[43,40,38,55,35,54,44,125,141,46,2,71,65,64,63,82,81,69,95,32,31,30,29,26,3])).
cnf(143,plain,
(E(f16(x1431,x1431),x1431)),
inference(rename_variables,[],[44])).
cnf(150,plain,
(P4(f16(a1,a1),a6)),
inference(scs_inference,[],[37,43,40,38,55,35,54,44,125,141,47,48,46,2,71,65,64,63,82,81,69,95,32,31,30,29,26,3,84,77,73])).
cnf(153,plain,
(E(f16(x1531,a1),x1531)),
inference(rename_variables,[],[41])).
cnf(156,plain,
(E(f16(x1561,x1561),x1561)),
inference(rename_variables,[],[44])).
cnf(159,plain,
(E(f16(x1591,x1591),x1591)),
inference(rename_variables,[],[44])).
cnf(201,plain,
(~P5(x2011,f12(a5,f12(a5,a6)))),
inference(scs_inference,[],[37,43,40,38,55,35,36,54,44,125,141,143,156,159,47,48,41,153,46,2,71,65,64,63,82,81,69,95,32,31,30,29,26,3,84,77,73,100,87,94,76,75,60,57,79,78,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,99,72,67,106])).
cnf(209,plain,
(P3(f12(a3,f12(a3,x2091)),f12(a5,f12(a5,x2091)))),
inference(scs_inference,[],[37,43,40,38,55,35,36,54,44,125,141,143,156,159,47,48,41,153,46,2,71,65,64,63,82,81,69,95,32,31,30,29,26,3,84,77,73,100,87,94,76,75,60,57,79,78,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,99,72,67,106,90,89,88,107])).
cnf(211,plain,
(P5(f4(a3,a6),f12(a3,f12(a3,a6)))),
inference(scs_inference,[],[37,43,40,38,55,35,36,54,44,125,141,143,156,159,47,48,41,153,46,2,71,65,64,63,82,81,69,95,32,31,30,29,26,3,84,77,73,100,87,94,76,75,60,57,79,78,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,99,72,67,106,90,89,88,107,104])).
cnf(251,plain,
(P3(x2511,x2511)),
inference(rename_variables,[],[43])).
cnf(272,plain,
($false), inference(scs_inference,[],[37,42,43,251,56,41,38,55,139,201,124,142,209,211,150,74,71,65,82,81,98,105,97,77,76,63,34,3,91,83]), ['proof']). % SZS output end Proof ## CSE_E 1.5 Peiyao Liu Southwest Jiaotong University, China ### Sample solution for SEU140+2 % SZS status Theorem for SEU140+2.p % SZS output start Proof fof(t4_xboole_0, lemma, ![X1, X2]:(~((~(disjoint(X1,X2))&![X3]:~(in(X3,set_intersection2(X1,X2)))))&~((?[X3]:in(X3,set_intersection2(X1,X2))&disjoint(X1,X2)))), file('/home/ars01/Desktop/dist/problems/SEU140+2.p', t4_xboole_0)). fof(t48_xboole_1, lemma, ![X1, X2]:set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2), file('/home/ars01/Desktop/dist/problems/SEU140+2.p', t48_xboole_1)). fof(t63_xboole_1, conjecture, ![X1, X2, X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3)), file('/home/ars01/Desktop/dist/problems/SEU140+2.p', t63_xboole_1)). fof(d1_xboole_0, axiom, ![X1]:(X1=empty_set<=>![X2]:~(in(X2,X1))), file('/home/ars01/Desktop/dist/problems/SEU140+2.p', d1_xboole_0)). fof(d4_xboole_0, axiom, ![X1, X2, X3]:(X3=set_difference(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&~(in(X4,X2))))), file('/home/ars01/Desktop/dist/problems/SEU140+2.p', d4_xboole_0)). fof(t3_xboole_0, lemma, ![X1, X2]:(~((~(disjoint(X1,X2))&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2)))), file('/home/ars01/Desktop/dist/problems/SEU140+2.p', t3_xboole_0)). fof(d3_xboole_0, axiom, ![X1, X2, X3]:(X3=set_intersection2(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&in(X4,X2)))), file('/home/ars01/Desktop/dist/problems/SEU140+2.p', d3_xboole_0)). fof(l32_xboole_1, lemma, ![X1, X2]:(set_difference(X1,X2)=empty_set<=>subset(X1,X2)), file('/home/ars01/Desktop/dist/problems/SEU140+2.p', l32_xboole_1)). fof(d10_xboole_0, axiom, ![X1, X2]:(X1=X2<=>(subset(X1,X2)&subset(X2,X1))), file('/home/ars01/Desktop/dist/problems/SEU140+2.p', d10_xboole_0)). fof(t36_xboole_1, lemma, ![X1, X2]:subset(set_difference(X1,X2),X1), file('/home/ars01/Desktop/dist/problems/SEU140+2.p', t36_xboole_1)). fof(t3_boole, axiom, ![X1]:set_difference(X1,empty_set)=X1, file('/home/ars01/Desktop/dist/problems/SEU140+2.p', t3_boole)). fof(c_0_11, lemma, ![X1, X2]:(~((~disjoint(X1,X2)&![X3]:~in(X3,set_intersection2(X1,X2))))&~((?[X3]:in(X3,set_intersection2(X1,X2))&disjoint(X1,X2)))), inference(fof_simplification,[status(thm)],[t4_xboole_0])). fof(c_0_12, lemma, ![X226, X227, X229, X230, X231]:((disjoint(X226,X227)|in(esk10_2(X226,X227),set_intersection2(X226,X227)))&(~in(X231,set_intersection2(X229,X230))|~disjoint(X229,X230))), inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_11])])])])])). fof(c_0_13, lemma, ![X223, X224]:set_difference(X223,set_difference(X223,X224))=set_intersection2(X223,X224), inference(variable_rename,[status(thm)],[t48_xboole_1])). fof(c_0_14, negated_conjecture, ~(![X1, X2, X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3))), inference(assume_negation,[status(cth)],[t63_xboole_1])). cnf(c_0_15, lemma, (~in(X1,set_intersection2(X2,X3))|~disjoint(X2,X3)), inference(split_conjunct,[status(thm)],[c_0_12])). cnf(c_0_16, lemma, (set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_13])). fof(c_0_17, negated_conjecture, ((subset(esk11_0,esk12_0)&disjoint(esk12_0,esk13_0))&~disjoint(esk11_0,esk13_0)), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_14])])])). fof(c_0_18, plain, ![X1]:(X1=empty_set<=>![X2]:~in(X2,X1)), inference(fof_simplification,[status(thm)],[d1_xboole_0])). fof(c_0_19, plain, ![X1, X2, X3]:(X3=set_difference(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&~in(X4,X2)))), inference(fof_simplification,[status(thm)],[d4_xboole_0])). fof(c_0_20, lemma, ![X1, X2]:(~((~disjoint(X1,X2)&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2)))), inference(fof_simplification,[status(thm)],[t3_xboole_0])). cnf(c_0_21, lemma, (~disjoint(X2,X3)|~in(X1,set_difference(X2,set_difference(X2,X3)))), inference(rw,[status(thm)],[c_0_15, c_0_16])). cnf(c_0_22, negated_conjecture, (disjoint(esk12_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_17])). fof(c_0_23, plain, ![X126, X127, X128]:((X126!=empty_set|~in(X127,X126))&(in(esk1_1(X128),X128)|X128=empty_set)), inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_18])])])])])). fof(c_0_24, plain, ![X145, X146, X147, X148, X149, X150, X151, X152]:((((in(X148,X145)|~in(X148,X147)|X147!=set_intersection2(X145,X146))&(in(X148,X146)|~in(X148,X147)|X147!=set_intersection2(X145,X146)))&(~in(X149,X145)|~in(X149,X146)|in(X149,X147)|X147!=set_intersection2(X145,X146)))&((~in(esk4_3(X150,X151,X152),X152)|(~in(esk4_3(X150,X151,X152),X150)|~in(esk4_3(X150,X151,X152),X151))|X152=set_intersection2(X150,X151))&((in(esk4_3(X150,X151,X152),X150)|in(esk4_3(X150,X151,X152),X152)|X152=set_intersection2(X150,X151))&(in(esk4_3(X150,X151,X152),X151)|in(esk4_3(X150,X151,X152),X152)|X152=set_intersection2(X150,X151))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[d3_xboole_0])])])])])])). fof(c_0_25, plain, ![X154, X155, X156, X157, X158, X159, X160, X161]:((((in(X157,X154)|~in(X157,X156)|X156!=set_difference(X154,X155))&(~in(X157,X155)|~in(X157,X156)|X156!=set_difference(X154,X155)))&(~in(X158,X154)|in(X158,X155)|in(X158,X156)|X156!=set_difference(X154,X155)))&((~in(esk5_3(X159,X160,X161),X161)|(~in(esk5_3(X159,X160,X161),X159)|in(esk5_3(X159,X160,X161),X160))|X161=set_difference(X159,X160))&((in(esk5_3(X159,X160,X161),X159)|in(esk5_3(X159,X160,X161),X161)|X161=set_difference(X159,X160))&(~in(esk5_3(X159,X160,X161),X160)|in(esk5_3(X159,X160,X161),X161)|X161=set_difference(X159,X160))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_19])])])])])])). fof(c_0_26, lemma, ![X212, X213, X215, X216, X217]:(((in(esk9_2(X212,X213),X212)|disjoint(X212,X213))&(in(esk9_2(X212,X213),X213)|disjoint(X212,X213)))&(~in(X217,X215)|~in(X217,X216)|~disjoint(X215,X216))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_20])])])])])])). fof(c_0_27, lemma, ![X174, X175]:((set_difference(X174,X175)!=empty_set|subset(X174,X175))&(~subset(X174,X175)|set_difference(X174,X175)=empty_set)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[l32_xboole_1])])). cnf(c_0_28, negated_conjecture, (~in(X1,set_difference(esk12_0,set_difference(esk12_0,esk13_0)))), inference(spm,[status(thm)],[c_0_21, c_0_22])). cnf(c_0_29, plain, (in(esk1_1(X1),X1)|X1=empty_set), inference(split_conjunct,[status(thm)],[c_0_23])). cnf(c_0_30, plain, (in(X1,X2)|~in(X1,X3)|X3!=set_intersection2(X4,X2)), inference(split_conjunct,[status(thm)],[c_0_24])). cnf(c_0_31, plain, (~in(X1,X2)|~in(X1,X3)|X3!=set_difference(X4,X2)), inference(split_conjunct,[status(thm)],[c_0_25])). cnf(c_0_32, negated_conjecture, (~disjoint(esk11_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_17])). cnf(c_0_33, lemma, (in(esk9_2(X1,X2),X2)|disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_26])). fof(c_0_34, plain, ![X124, X125]:(((subset(X124,X125)|X124!=X125)&(subset(X125,X124)|X124!=X125))&(~subset(X124,X125)|~subset(X125,X124)|X124=X125)), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d10_xboole_0])])])). cnf(c_0_35, lemma, (subset(X1,X2)|set_difference(X1,X2)!=empty_set), inference(split_conjunct,[status(thm)],[c_0_27])). cnf(c_0_36, negated_conjecture, (set_difference(esk12_0,set_difference(esk12_0,esk13_0))=empty_set), inference(spm,[status(thm)],[c_0_28, c_0_29])). fof(c_0_37, lemma, ![X205, X206]:subset(set_difference(X205,X206),X205), inference(variable_rename,[status(thm)],[t36_xboole_1])). cnf(c_0_38, plain, (in(X1,X2)|X3!=set_difference(X4,set_difference(X4,X2))|~in(X1,X3)), inference(rw,[status(thm)],[c_0_30, c_0_16])). cnf(c_0_39, lemma, (set_difference(X1,X2)=empty_set|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_27])). cnf(c_0_40, negated_conjecture, (subset(esk11_0,esk12_0)), inference(split_conjunct,[status(thm)],[c_0_17])). fof(c_0_41, plain, ![X211]:set_difference(X211,empty_set)=X211, inference(variable_rename,[status(thm)],[t3_boole])). cnf(c_0_42, plain, (~in(X1,set_difference(X2,X3))|~in(X1,X3)), inference(er,[status(thm)],[c_0_31])). cnf(c_0_43, negated_conjecture, (in(esk9_2(esk11_0,esk13_0),esk13_0)), inference(spm,[status(thm)],[c_0_32, c_0_33])). cnf(c_0_44, plain, (X1=X2|~subset(X1,X2)|~subset(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_34])). cnf(c_0_45, lemma, (subset(esk12_0,set_difference(esk12_0,esk13_0))), inference(spm,[status(thm)],[c_0_35, c_0_36])). cnf(c_0_46, lemma, (subset(set_difference(X1,X2),X1)), inference(split_conjunct,[status(thm)],[c_0_37])). cnf(c_0_47, plain, (in(X1,X2)|~in(X1,set_difference(X3,set_difference(X3,X2)))), inference(er,[status(thm)],[c_0_38])). cnf(c_0_48, negated_conjecture, (set_difference(esk11_0,esk12_0)=empty_set), inference(spm,[status(thm)],[c_0_39, c_0_40])). cnf(c_0_49, plain, (set_difference(X1,empty_set)=X1), inference(split_conjunct,[status(thm)],[c_0_41])). cnf(c_0_50, lemma, (in(esk9_2(X1,X2),X1)|disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_26])). cnf(c_0_51, negated_conjecture, (~in(esk9_2(esk11_0,esk13_0),set_difference(X1,esk13_0))), inference(spm,[status(thm)],[c_0_42, c_0_43])). cnf(c_0_52, lemma, (set_difference(esk12_0,esk13_0)=esk12_0), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_44, c_0_45]), c_0_46])])). cnf(c_0_53, negated_conjecture, (in(X1,esk12_0)|~in(X1,esk11_0)), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_47, c_0_48]), c_0_49])). cnf(c_0_54, negated_conjecture, (in(esk9_2(esk11_0,esk13_0),esk11_0)), inference(spm,[status(thm)],[c_0_32, c_0_50])). cnf(c_0_55, lemma, (~in(esk9_2(esk11_0,esk13_0),esk12_0)), inference(spm,[status(thm)],[c_0_51, c_0_52])). cnf(c_0_56, negated_conjecture, ($false), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_53, c_0_54]), c_0_55]), ['proof']).
% SZS output end Proof

## cvc5 1.0

Andrew Reynolds
University of Iowa, USA

### Sample solution for DAT013_1

% SZS output start Proof for DAT013_1
% SZS output end Proof for DAT013_1

## cvc5 1.0.5

Andrew Reynolds
University of Iowa, USA

### Sample solution for SET014^4

% SZS status Unsatisfiable for SET014^4
% SZS output start Proof for SET014^4
(
(let ((_let_1 (not (forall ((X (-> $$unsorted Bool)) (Y (->$$unsorted Bool)) (A
(-> $$unsorted Bool))) (=> (and (@ (@ tptp.subset X) A) (@ (@ tptp.subset Y) A)) (@ (@ tptp.subset (@ (@ tptp.union X) Y)) A)))))) (let ((_let_2 (= tptp.misses (lambda ((X (->$$unsorted Bool)) (Y (-> $$unsorted Bool))) (not (exists ((U$$unsorted)) (and (@ X U) (@ Y U)))))))) (let ((_let_3 (= tptp.meets (lambda ((X
(-> $$unsorted Bool)) (Y (->$$unsorted Bool))) (exists ((U $$unsorted)) (and (@ X U) (@ Y U))))))) (let ((_let_4 (= tptp.subset (lambda ((X (->$$unsorted
Bool)) (Y (-> $$unsorted Bool))) (forall ((U$$unsorted)) (=> (@ X U) (@ Y
U))))))) (let ((_let_5 (= tptp.disjoint (lambda ((X (-> $$unsorted Bool)) (Y (->$$unsorted Bool))) (= (@ (@ tptp.intersection X) Y) tptp.emptyset))))) (let
((_let_6 (= tptp.complement (lambda ((X (-> $$unsorted Bool)) (U$$unsorted))
(not (@ X U)))))) (let ((_let_7 (= tptp.setminus (lambda ((X (-> $$unsorted Bool)) (Y (->$$unsorted Bool)) (U $$unsorted)) (and (@ X U) (not (@ Y U))))))) (let ((_let_8 (= tptp.intersection (lambda ((X (->$$unsorted Bool)) (Y (->
$$unsorted Bool)) (U$$unsorted)) (and (@ X U) (@ Y U)))))) (let ((_let_9 (=
tptp.excl_union (lambda ((X (-> $$unsorted Bool)) (Y (->$$unsorted Bool)) (U
$$unsorted)) (let ((_let_1 (@ Y U))) (let ((_let_2 (@ X U))) (or (and _let_2 (not _let_1)) (and (not _let_2) _let_1)))))))) (let ((_let_10 (= tptp.union (lambda ((X (->$$unsorted Bool)) (Y (-> $$unsorted Bool)) (U$$unsorted)) (or
(@ X U) (@ Y U)))))) (let ((_let_11 (= tptp.singleton (lambda ((X $$unsorted) (U$$unsorted)) (= U X))))) (let ((_let_12 (= tptp.unord_pair (lambda ((X
$$unsorted) (Y$$unsorted) (U $$unsorted)) (or (= U X) (= U Y)))))) (let ((_let_13 (= tptp.emptyset (lambda ((X$$unsorted)) false)))) (let ((_let_14 (=
tptp.is_a (lambda ((X $$unsorted) (M (->$$unsorted Bool))) (@ M X))))) (let
((_let_15 (= tptp.in (lambda ((X $$unsorted) (M (->$$unsorted Bool))) (@ M
X))))) (let ((_let_16 (forall ((U $$unsorted)) (or (not (ho_2 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_4 U)) (ho_2 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_5 U))))) (let ((_let_17 (ho_2 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_5 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_6))) (let ((_let_18 (ho_2 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_4 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_6))) (let ((_let_19 (not _let_18))) (let ((_let_20 (or _let_19 _let_17))) (let ((_let_21 (ho_2 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_3 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_6))) (let ((_let_22 (not _let_21))) (let ((_let_23 (and _let_22 _let_19))) (let ((_let_24 (not _let_16))) (let ((_let_25 (forall ((U$$unsorted)) (or (not (ho_2
SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_3 U)) (ho_2 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_5
U))))) (let ((_let_26 (not _let_25))) (let ((_let_27 (or _let_26 _let_24 _let_23
_let_17))) (let ((_let_28 (forall ((BOUND_VARIABLE_946 |u_(-> $$unsorted Bool)|) (BOUND_VARIABLE_943 |u_(->$$unsorted Bool)|) (BOUND_VARIABLE_939 |u_(->
$$unsorted Bool)|) (BOUND_VARIABLE_894$$unsorted)) (or (not (forall ((U
$$unsorted)) (or (not (ho_2 BOUND_VARIABLE_946 U)) (ho_2 BOUND_VARIABLE_939 U)))) (not (forall ((U$$unsorted)) (or (not (ho_2 BOUND_VARIABLE_943 U)) (ho_2
BOUND_VARIABLE_939 U)))) (and (not (ho_2 BOUND_VARIABLE_946 BOUND_VARIABLE_894))
(not (ho_2 BOUND_VARIABLE_943 BOUND_VARIABLE_894))) (ho_2 BOUND_VARIABLE_939
BOUND_VARIABLE_894))))) (let ((_let_29 (not _let_27))) (let ((_let_30 (not
_let_28))) (let ((_let_31 (ASSUME :args (_let_15)))) (let ((_let_32 (ASSUME
:args (_let_14)))) (let ((_let_33 (EQ_RESOLVE (ASSUME :args (_let_13))
(MACRO_SR_EQ_INTRO :args (_let_13 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_34
(EQ_RESOLVE (ASSUME :args (_let_12)) (MACRO_SR_EQ_INTRO :args (_let_12
SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_35 (EQ_RESOLVE (ASSUME :args (_let_11))
(MACRO_SR_EQ_INTRO :args (_let_11 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_36
(ASSUME :args (_let_10)))) (let ((_let_37 (ASSUME :args (_let_9)))) (let
((_let_38 (ASSUME :args (_let_8)))) (let ((_let_39 (ASSUME :args (_let_7))))
(let ((_let_40 (ASSUME :args (_let_6)))) (let ((_let_41 (EQ_RESOLVE (ASSUME
:args (_let_1)) (TRANS (MACRO_SR_EQ_INTRO :args (_let_1 SB_DEFAULT
SBA_FIXPOINT)) (MACRO_SR_EQ_INTRO (AND_INTRO (EQ_RESOLVE (ASSUME :args (_let_2))
(MACRO_SR_EQ_INTRO :args (_let_2 SB_DEFAULT SBA_FIXPOINT))) (EQ_RESOLVE (ASSUME
:args (_let_3)) (MACRO_SR_EQ_INTRO :args (_let_3 SB_DEFAULT SBA_FIXPOINT)))
(EQ_RESOLVE (ASSUME :args (_let_4)) (MACRO_SR_EQ_INTRO :args (_let_4 SB_DEFAULT
SBA_FIXPOINT))) (EQ_RESOLVE (EQ_RESOLVE (ASSUME :args (_let_5))
(MACRO_SR_EQ_INTRO :args (_let_5 SB_DEFAULT SBA_FIXPOINT))) (MACRO_SR_EQ_INTRO
(AND_INTRO _let_40 _let_39 _let_38 _let_37 _let_36 _let_35 _let_34 _let_33
_let_32 _let_31) :args ((= tptp.disjoint (lambda ((X (-> $$unsorted Bool)) (Y (->$$unsorted Bool))) (= tptp.emptyset (@ (@ tptp.intersection X) Y))))
SB_DEFAULT SBA_FIXPOINT))) _let_40 _let_39 _let_38 _let_37 _let_36 _let_35
_let_34 _let_33 _let_32 _let_31) :args ((not (forall ((X (-> $$unsorted Bool)) (Y (->$$unsorted Bool)) (A (-> $$unsorted Bool))) (or (not (@ (@ tptp.subset X) A)) (not (@ (@ tptp.subset Y) A)) (@ (@ tptp.subset (@ (@ tptp.union X) Y)) A)))) SB_DEFAULT SBA_FIXPOINT)) (PREPROCESS :args ((= (not (forall ((X (->$$unsorted Bool)) (Y (-> $$unsorted Bool)) (A (->$$unsorted Bool))
(BOUND_VARIABLE_894 $$unsorted)) (or (not (forall ((U$$unsorted)) (or (not (@ X
U)) (@ A U)))) (not (forall ((U $$unsorted)) (or (not (@ Y U)) (@ A U)))) (and (not (@ X BOUND_VARIABLE_894)) (not (@ Y BOUND_VARIABLE_894))) (@ A BOUND_VARIABLE_894)))) _let_30))))))) (let ((_let_42 (or))) (let ((_let_43 (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (IMPLIES_ELIM (SCOPE (SKOLEMIZE _let_41) :args (_let_30))) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_30) _let_28))) (REFL :args (_let_29)) :args _let_42)) _let_41 :args (_let_29 true _let_28)))) (let ((_let_44 (REFL :args (_let_27)))) (let ((_let_45 (not _let_20))) (let ((_let_46 (MACRO_RESOLUTION_TRUST (CNF_OR_NEG :args (_let_27 3)) _let_43 :args ((not _let_17) true _let_27)))) (let ((_let_47 (or _let_22 _let_17))) (let ((_let_48 (_let_25))) (let ((_let_49 (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_6 QUANTIFIERS_INST_CBQI_CONFLICT))) (let ((_let_50 (_let_23))) (let ((_let_51 (_let_16))) (SCOPE (SCOPE (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME :args _let_51) :args _let_49) :args _let_51)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_20)) :args ((or _let_19 _let_17 _let_45))) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_AND_NEG :args _let_50) (CONG (REFL :args _let_50) (MACRO_SR_PRED_INTRO :args ((= (not _let_22) _let_21))) (MACRO_SR_PRED_INTRO :args ((= (not _let_19) _let_18))) :args _let_42)) :args ((or _let_21 _let_18 _let_23))) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_47)) :args ((or _let_22 _let_17 (not _let_47)))) _let_46 (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME :args _let_48) :args _let_49) :args _let_48)) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_27 0)) (CONG _let_44 (MACRO_SR_PRED_INTRO :args ((= (not _let_26) _let_25))) :args _let_42)) :args ((or _let_25 _let_27))) _let_43 :args (_let_25 true _let_27)) :args (_let_47 false _let_25)) :args (_let_22 true _let_17 false _let_47)) (MACRO_RESOLUTION_TRUST (CNF_OR_NEG :args (_let_27 2)) _let_43 :args ((not _let_23) true _let_27)) :args (_let_18 true _let_21 true _let_23)) _let_46 :args (_let_45 false _let_18 true _let_17)) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_27 1)) (CONG _let_44 (MACRO_SR_PRED_INTRO :args ((= (not _let_24) _let_16))) :args _let_42)) :args ((or _let_16 _let_27))) _let_43 :args (_let_16 true _let_27)) :args (false true _let_20 false _let_16)) :args (_let_15 _let_14 _let_13 _let_12 _let_11 _let_10 _let_9 _let_8 _let_7 _let_6 _let_5 _let_4 _let_3 _let_2 _let_1 true)))))))))))))))))))))))))))))))))))))))))))))))))))))) ) % SZS output end Proof for SET014^4 ### Sample solution for DAT013_1 % SZS status Unsatisfiable for DAT013_1 % SZS output start Proof for DAT013_1 ( (let ((_let_1 (not (forall ((U tptp.array) (V Int) (W Int)) (=> (forall ((X Int)) (=> (and (<= V X) (<= X W)) (> (tptp.read U X) 0))) (forall ((Y Int)) (=> (and (<= (+ V 3) Y) (<= Y W)) (> (tptp.read U Y) 0)))))))) (let ((_let_2 (* (- 1) SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_5))) (let ((_let_3 (+ SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_3 _let_2))) (let ((_let_4 (>= _let_3 (- 2)))) (let ((_let_5 (>= _let_3 1))) (let ((_let_6 (>= (tptp.read SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_2 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_5) 1))) (let ((_let_7 (>= (+ SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_4 _let_2) 0))) (let ((_let_8 (not _let_7))) (let ((_let_9 (forall ((X Int)) (or (not (>= (+ X (* (- 1) SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_3)) 0)) (>= (+ X (* (- 1) SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_4)) 1) (>= (tptp.read SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_2 X) 1))))) (let ((_let_10 (not _let_9))) (let ((_let_11 (or _let_10 _let_4 _let_8 _let_6))) (let ((_let_12 (not _let_4))) (let ((_let_13 (forall ((U tptp.array) (V Int) (W Int) (BOUND_VARIABLE_680 Int)) (let ((_let_1 (* (- 1) BOUND_VARIABLE_680))) (or (not (forall ((X Int)) (let ((_let_1 (* (- 1) X))) (or (>= (+ V _let_1) 1) (not (>= (+ W _let_1) 0)) (>= (tptp.read U X) 1))))) (>= (+ V _let_1) (- 2)) (not (>= (+ W _let_1) 0)) (>= (tptp.read U BOUND_VARIABLE_680) 1)))))) (let ((_let_14 (not _let_11))) (let ((_let_15 (EQ_RESOLVE (ASSUME :args (_let_1)) (MACRO_SR_EQ_INTRO :args (_let_1 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_16 (or))) (let ((_let_17 (not _let_13))) (let ((_let_18 (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (IMPLIES_ELIM (EQ_RESOLVE (SCOPE (SKOLEMIZE _let_15) :args (_let_17)) (REWRITE :args ((=> _let_17 (not (or (not (forall ((X Int)) (let ((_let_1 (* (- 1) X))) (or (>= (+ SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_3 _let_1) 1) (not (>= (+ SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_4 _let_1) 0)) (>= (tptp.read SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_2 X) 1))))) _let_4 _let_8 _let_6))))))) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_17) _let_13))) (REFL :args (_let_14)) :args _let_16)) _let_15 :args (_let_14 true _let_13)))) (let ((_let_19 (or _let_5 _let_8 _let_6))) (let ((_let_20 (REFL :args (_let_11)))) (let ((_let_21 (_let_9))) (let ((_let_22 (< _let_3 1))) (let ((_let_23 (_let_5))) (let ((_let_24 (ASSUME :args _let_23))) (let ((_let_25 (ASSUME :args (_let_12)))) (SCOPE (SCOPE (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (NOT_AND (MACRO_SR_PRED_TRANSFORM (SCOPE (AND_INTRO _let_24 _let_25) :args (_let_12 _let_5)) (SCOPE (CONTRA (MACRO_SR_PRED_TRANSFORM (SCOPE (MACRO_SR_PRED_TRANSFORM (MACRO_ARITH_SCALE_SUM_UB _let_24 (INT_TIGHT_UB (MACRO_SR_PRED_TRANSFORM _let_25 :args ((< _let_3 (- 2))))) :args ((- 1.0) 1.0)) :args (false)) :args _let_23) :args (_let_22)) (MACRO_SR_PRED_TRANSFORM _let_24 :args ((not _let_22)))) :args (_let_5 _let_12)) :args ((not (and _let_12 _let_5)) SB_LITERAL))) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_12) _let_4))) (REFL :args ((not _let_5))) :args _let_16)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_19)) :args ((or _let_8 _let_6 _let_5 (not _let_19)))) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_11 2)) (CONG _let_20 (MACRO_SR_PRED_INTRO :args ((= (not _let_8) _let_7))) :args _let_16)) :args ((or _let_7 _let_11))) _let_18 :args (_let_7 true _let_11)) (MACRO_RESOLUTION_TRUST (CNF_OR_NEG :args (_let_11 3)) _let_18 :args ((not _let_6) true _let_11)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (MACRO_SR_PRED_ELIM (SCOPE (INSTANTIATE (ASSUME :args _let_21) :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_5 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((tptp.read SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_2 X)))) :args _let_21))) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_11 0)) (CONG _let_20 (MACRO_SR_PRED_INTRO :args ((= (not _let_10) _let_9))) :args _let_16)) :args ((or _let_9 _let_11))) _let_18 :args (_let_9 true _let_11)) :args (_let_19 false _let_9)) :args (_let_5 false _let_7 true _let_6 false _let_19)) (MACRO_RESOLUTION_TRUST (CNF_OR_NEG :args (_let_11 1)) _let_18 :args (_let_12 true _let_11)) :args (false false _let_5 true _let_4)) :args ((forall ((U tptp.array) (V Int) (W Int)) (= (tptp.read (tptp.write U V W) V) W)) (forall ((X tptp.array) (Y Int) (Z Int) (X1 Int)) (or (= Y Z) (= (tptp.read (tptp.write X Y X1) Z) (tptp.read X Z)))) _let_1 true)))))))))))))))))))))))))))) ) % SZS output end Proof for DAT013_1 ### Sample solution for COM001_10 % SZS status Satisfiable for % SZS output start FiniteModel for ( ; cardinality of$$unsorted is 1
; rep: (as @$$unsorted_0$$unsorted)
; cardinality of tptp.state is 1
; rep: (as @tptp.state_0 tptp.state)
; cardinality of tptp.label is 1
; rep: (as @tptp.label_0 tptp.label)
; cardinality of tptp.statement is 1
; rep: (as @tptp.statement_0 tptp.statement)
; cardinality of tptp.register is 1
; rep: (as @tptp.register_0 tptp.register)
; cardinality of tptp.number is 1
; rep: (as @tptp.number_0 tptp.number)
; cardinality of tptp.boolean is 1
; rep: (as @tptp.boolean_0 tptp.boolean)
(define-fun tptp.p3 () tptp.state (as @tptp.state_0 tptp.state))
(define-fun tptp.p4 () tptp.state (as @tptp.state_0 tptp.state))
(define-fun tptp.p5 () tptp.state (as @tptp.state_0 tptp.state))
(define-fun tptp.p8 () tptp.state (as @tptp.state_0 tptp.state))
(define-fun tptp.n () tptp.number (as @tptp.number_0 tptp.number))
(define-fun tptp.register_j () tptp.register (as @tptp.register_0
tptp.register))
(define-fun tptp.out () tptp.label (as @tptp.label_0 tptp.label))
(define-fun tptp.loop () tptp.label (as @tptp.label_0 tptp.label))
(define-fun tptp.equal_function ((_arg_1 tptp.register) (_arg_2 tptp.number))
tptp.boolean (as @tptp.boolean_0 tptp.boolean))
(define-fun tptp.goto (($x1 tptp.label)) tptp.statement (as @tptp.statement_0 tptp.statement)) (define-fun tptp.ifthen (($x1 tptp.boolean) ($x2 tptp.state)) tptp.statement (as @tptp.statement_0 tptp.statement)) (define-fun tptp.follows (($x1 tptp.state) ($x2 tptp.state)) Bool true) (define-fun tptp.succeeds (($x1 tptp.state) ($x2 tptp.state)) Bool true) (define-fun tptp.labels (($x1 tptp.label) ($x2 tptp.state)) Bool true) (define-fun tptp.has (($x1 tptp.state) ($x2 tptp.statement)) Bool true) ) % SZS output end FiniteModel for ### Sample solution for DAT335_2 % SZS status Satisfiable for % SZS output start FiniteModel for ( ; cardinality of $$unsorted is 1 ; rep: (as @$$unsorted_0 $$unsorted) ; cardinality of |tptp.'ki_world'| is 1 ; rep: (as @|tptp.'ki_world'|_0 |tptp.'ki_world'|) (define-fun |tptp.'ki_local_world'| () |tptp.'ki_world'| (as @|tptp.'ki_world'|_0 |tptp.'ki_world'|)) (define-fun |tptp.'ki_accessible'| ((x1 |tptp.'ki_world'|) (x2 |tptp.'ki_world'|)) Bool true) (define-fun tptp.cs ()$$unsorted (as @$$unsorted_0$$unsorted)) (define-fun tptp.sue () $$unsorted (as @$$unsorted_0 $$unsorted)) (define-fun tptp.mary ()$$unsorted (as @$$unsorted_0$$unsorted)) (define-fun tptp.john () $$unsorted (as @$$unsorted_0 $$unsorted)) (define-fun tptp.math ()$$unsorted (as @$$unsorted_0$$unsorted)) (define-fun tptp.psych () $$unsorted (as @$$unsorted_0 $$unsorted)) (define-fun tptp.teach ((BOUND_VARIABLE_739 |tptp.'ki_world'|) (BOUND_VARIABLE_740$$unsorted) (BOUND_VARIABLE_741 $$unsorted)) Bool false) (define-fun |tptp.'ki_exists_in_world_i'| ((BOUND_VARIABLE_752 |tptp.'ki_world'|) (BOUND_VARIABLE_754$$unsorted)) Bool true) ) % SZS output end FiniteModel for ### Sample solution for SEU140+2 % SZS status Unsatisfiable for SEU140+2 % SZS output start Proof for SEU140+2 ( (let ((_let_1 (not (forall ((A $$unsorted) (B$$unsorted) (C $$unsorted)) (=> (and (tptp.subset A B) (tptp.disjoint B C)) (tptp.disjoint A C)))))) (let ((_let_2 (forall ((A$$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.disjoint A B))) (and (not (and (not _let_1) (forall ((C$$unsorted)) (not (and (tptp.in C A) (tptp.in C B)))))) (not (and (exists ((C $$unsorted)) (and (tptp.in C A) (tptp.in C B))) _let_1))))))) (let ((_let_3 (forall ((A$$unsorted) (B $$unsorted)) (=> (tptp.disjoint A B) (tptp.disjoint B A))))) (let ((_let_4 (forall ((A$$unsorted) (B $$unsorted)) (= (tptp.subset A B) (forall ((C$$unsorted)) (=> (tptp.in C A) (tptp.in C B))))))) (let ((_let_5 (tptp.in SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_9 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_4))) (let ((_let_6 (tptp.in SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_9 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_5))) (let ((_let_7 (not _let_5))) (let ((_let_8 (or _let_7 _let_6))) (let ((_let_9 (tptp.in SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_9 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_6))) (let ((_let_10 (not _let_9))) (let ((_let_11 (or _let_7 _let_10))) (let ((_let_12 (forall ((C $$unsorted)) (or (not (tptp.in C SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_4)) (not (tptp.in C SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_6)))))) (let ((_let_13 (not _let_11))) (let ((_let_14 (not _let_12))) (let ((_let_15 (tptp.disjoint SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_4 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_6))) (let ((_let_16 (or _let_15 _let_14))) (let ((_let_17 (forall ((BOUND_VARIABLE_1176$$unsorted) (BOUND_VARIABLE_1178 $$unsorted)) (or (tptp.disjoint BOUND_VARIABLE_1176 BOUND_VARIABLE_1178) (not (forall ((C$$unsorted)) (or (not (tptp.in C BOUND_VARIABLE_1176)) (not (tptp.in C BOUND_VARIABLE_1178))))))))) (let ((_let_18 (EQ_RESOLVE (ASSUME :args (_let_2)) (MACRO_SR_EQ_INTRO :args (_let_2 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_19 (_let_17))) (let ((_let_20 (tptp.disjoint SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_5 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_6))) (let ((_let_21 (not _let_20))) (let ((_let_22 (tptp.subset SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_4 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_5))) (let ((_let_23 (not _let_22))) (let ((_let_24 (or _let_23 _let_21 _let_15))) (let ((_let_25 (forall ((A $$unsorted) (B$$unsorted) (C $$unsorted)) (or (not (tptp.subset A B)) (not (tptp.disjoint B C)) (tptp.disjoint A C))))) (let ((_let_26 (not _let_24))) (let ((_let_27 (EQ_RESOLVE (ASSUME :args (_let_1)) (MACRO_SR_EQ_INTRO :args (_let_1 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_28 (or))) (let ((_let_29 (not _let_25))) (let ((_let_30 (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (IMPLIES_ELIM (SCOPE (SKOLEMIZE _let_27) :args (_let_29))) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_29) _let_25))) (REFL :args (_let_26)) :args _let_28)) _let_27 :args (_let_26 true _let_25)))) (let ((_let_31 (_let_14))) (let ((_let_32 (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (IMPLIES_ELIM (SCOPE (SKOLEMIZE (ASSUME :args _let_31)) :args _let_31)) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_14) _let_12))) (REFL :args (_let_13)) :args _let_28)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_16)) :args ((or _let_15 _let_14 (not _let_16)))) (MACRO_RESOLUTION_TRUST (CNF_OR_NEG :args (_let_24 2)) _let_30 :args ((not _let_15) true _let_24)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME :args _let_19) :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_4 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_6 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((not (= (tptp.disjoint BOUND_VARIABLE_1176 BOUND_VARIABLE_1178) true))))) :args _let_19)) (AND_ELIM _let_18 :args (0)) :args (_let_16 false _let_17)) :args (_let_14 true _let_15 false _let_16)) :args (_let_13 true _let_12)))) (let ((_let_33 (REFL :args (_let_11)))) (let ((_let_34 (forall ((C$$unsorted)) (or (not (tptp.in C SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_4)) (tptp.in C SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_5))))) (let ((_let_35 (= _let_22 _let_34))) (let ((_let_36 (forall ((A $$unsorted) (B$$unsorted)) (= (tptp.subset A B) (forall ((C $$unsorted)) (or (not (tptp.in C A)) (tptp.in C B))))))) (let ((_let_37 (EQ_RESOLVE (ASSUME :args (_let_4)) (MACRO_SR_EQ_INTRO :args (_let_4 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_38 (REFL :args (_let_24)))) (let ((_let_39 (_let_34))) (let ((_let_40 (not _let_6))) (let ((_let_41 (tptp.disjoint SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_6 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_5))) (let ((_let_42 (not _let_41))) (let ((_let_43 (or _let_42 _let_10 _let_40))) (let ((_let_44 (forall ((BOUND_VARIABLE_1191$$unsorted) (BOUND_VARIABLE_1193 $$unsorted) (BOUND_VARIABLE_1207$$unsorted)) (or (not (tptp.disjoint BOUND_VARIABLE_1191 BOUND_VARIABLE_1193)) (not (tptp.in BOUND_VARIABLE_1207 BOUND_VARIABLE_1191)) (not (tptp.in BOUND_VARIABLE_1207 BOUND_VARIABLE_1193)))))) (let ((_let_45 (_let_44))) (let ((_let_46 (or _let_21 _let_41))) (let ((_let_47 (forall ((A $$unsorted) (B$$unsorted)) (or (not (tptp.disjoint A B)) (tptp.disjoint B A))))) (let ((_let_48 (EQ_RESOLVE (ASSUME :args (_let_3)) (MACRO_SR_EQ_INTRO :args (_let_3 SB_DEFAULT SBA_FIXPOINT))))) (SCOPE (SCOPE (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_8)) :args ((or _let_7 _let_6 (not _let_8)))) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_43)) :args ((or _let_42 _let_10 _let_40 (not _let_43)))) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_46)) :args ((or _let_21 _let_41 (not _let_46)))) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_24 1)) (CONG _let_38 (MACRO_SR_PRED_INTRO :args ((= (not _let_21) _let_20))) :args _let_28)) :args ((or _let_20 _let_24))) _let_30 :args (_let_20 true _let_24)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_48 :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_5 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_6 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((not (= (tptp.disjoint A B) false))))) :args (_let_47))) _let_48 :args (_let_46 false _let_47)) :args (_let_41 false _let_20 false _let_46)) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_11 1)) (CONG _let_33 (MACRO_SR_PRED_INTRO :args ((= (not _let_10) _let_9))) :args _let_28)) :args ((or _let_9 _let_11))) _let_32 :args (_let_9 true _let_11)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME :args _let_45) :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_6 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_5 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_9 QUANTIFIERS_INST_E_MATCHING ((not (= (tptp.disjoint BOUND_VARIABLE_1191 BOUND_VARIABLE_1193) false)) (not (= (tptp.in BOUND_VARIABLE_1207 BOUND_VARIABLE_1191) false))))) :args _let_45)) (AND_ELIM _let_18 :args (1)) :args (_let_43 false _let_44)) :args (_let_40 false _let_41 false _let_9 false _let_43)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME :args _let_39) :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_9 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((not (= (tptp.in C SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_4) false))))) :args _let_39)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_EQUIV_POS1 :args (_let_35)) :args ((or _let_23 _let_34 (not _let_35)))) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_24 0)) (CONG _let_38 (MACRO_SR_PRED_INTRO :args ((= (not _let_23) _let_22))) :args _let_28)) :args ((or _let_22 _let_24))) _let_30 :args (_let_22 true _let_24)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_37 :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_4 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_5 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((tptp.subset A B)))) :args (_let_36))) _let_37 :args (_let_35 false _let_36)) :args (_let_34 false _let_22 false _let_35)) :args (_let_8 false _let_34)) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_11 0)) (CONG _let_33 (MACRO_SR_PRED_INTRO :args ((= (not _let_7) _let_5))) :args _let_28)) :args ((or _let_5 _let_11))) _let_32 :args (_let_5 true _let_11)) :args (false true _let_6 false _let_8 false _let_5)) :args ((forall ((A $$unsorted) (B$$unsorted)) (=> (tptp.in A B) (not (tptp.in B A)))) (forall ((A $$unsorted) (B$$unsorted)) (=> (tptp.proper_subset A B) (not (tptp.proper_subset B A)))) (forall ((A $$unsorted) (B$$unsorted)) (= (tptp.set_union2 A B) (tptp.set_union2 B A))) (forall ((A $$unsorted) (B$$unsorted)) (= (tptp.set_intersection2 A B) (tptp.set_intersection2 B A))) (forall ((A $$unsorted) (B$$unsorted)) (= (= A B) (and (tptp.subset A B) (tptp.subset B A)))) (forall ((A $$unsorted)) (= (= A tptp.empty_set) (forall ((B$$unsorted)) (not (tptp.in B A))))) (forall ((A $$unsorted) (B$$unsorted) (C $$unsorted)) (= (= C (tptp.set_union2 A B)) (forall ((D$$unsorted)) (= (tptp.in D C) (or (tptp.in D A) (tptp.in D B)))))) _let_4 (forall ((A $$unsorted) (B$$unsorted) (C $$unsorted)) (= (= C (tptp.set_intersection2 A B)) (forall ((D$$unsorted)) (= (tptp.in D C) (and (tptp.in D A) (tptp.in D B)))))) (forall ((A $$unsorted) (B$$unsorted) (C $$unsorted)) (= (= C (tptp.set_difference A B)) (forall ((D$$unsorted)) (= (tptp.in D C) (and (tptp.in D A) (not (tptp.in D B))))))) (forall ((A $$unsorted) (B$$unsorted)) (= (tptp.disjoint A B) (= (tptp.set_intersection2 A B) tptp.empty_set))) (forall ((A $$unsorted) (B$$unsorted)) (= (tptp.proper_subset A B) (and (tptp.subset A B) (not (= A B))))) true true true true (tptp.empty tptp.empty_set) (forall ((A $$unsorted) (B$$unsorted)) (=> (not (tptp.empty A)) (not (tptp.empty (tptp.set_union2 A B))))) (forall ((A $$unsorted) (B$$unsorted)) (=> (not (tptp.empty A)) (not (tptp.empty (tptp.set_union2 B A))))) (forall ((A $$unsorted) (B$$unsorted)) (= (tptp.set_union2 A A) A)) (forall ((A $$unsorted) (B$$unsorted)) (= (tptp.set_intersection2 A A) A)) (forall ((A $$unsorted) (B$$unsorted)) (not (tptp.proper_subset A A))) (forall ((A $$unsorted) (B$$unsorted)) (= (= (tptp.set_difference A B) tptp.empty_set) (tptp.subset A B))) (exists ((A $$unsorted)) (tptp.empty A)) (exists ((A$$unsorted)) (not (tptp.empty A))) (forall ((A $$unsorted) (B$$unsorted)) (tptp.subset A A)) _let_3 (forall ((A $$unsorted) (B$$unsorted)) (=> (tptp.subset A B) (= (tptp.set_union2 A B) B))) (forall ((A $$unsorted) (B$$unsorted)) (tptp.subset (tptp.set_intersection2 A B) A)) (forall ((A $$unsorted) (B$$unsorted) (C $$unsorted)) (=> (and (tptp.subset A B) (tptp.subset A C)) (tptp.subset A (tptp.set_intersection2 B C)))) (forall ((A$$unsorted)) (= (tptp.set_union2 A tptp.empty_set) A)) (forall ((A $$unsorted) (B$$unsorted) (C $$unsorted)) (=> (and (tptp.subset A B) (tptp.subset B C)) (tptp.subset A C))) (forall ((A$$unsorted) (B $$unsorted) (C$$unsorted)) (=> (tptp.subset A B) (tptp.subset (tptp.set_intersection2 A C) (tptp.set_intersection2 B C)))) (forall ((A $$unsorted) (B$$unsorted)) (=> (tptp.subset A B) (= (tptp.set_intersection2 A B) A))) (forall ((A $$unsorted)) (= (tptp.set_intersection2 A tptp.empty_set) tptp.empty_set)) (forall ((A$$unsorted) (B $$unsorted)) (=> (forall ((C$$unsorted)) (= (tptp.in C A) (tptp.in C B))) (= A B))) (forall ((A $$unsorted)) (tptp.subset tptp.empty_set A)) (forall ((A$$unsorted) (B $$unsorted) (C$$unsorted)) (=> (tptp.subset A B) (tptp.subset (tptp.set_difference A C) (tptp.set_difference B C)))) (forall ((A $$unsorted) (B$$unsorted)) (tptp.subset (tptp.set_difference A B) A)) (forall ((A $$unsorted) (B$$unsorted)) (= (= (tptp.set_difference A B) tptp.empty_set) (tptp.subset A B))) (forall ((A $$unsorted) (B$$unsorted)) (= (tptp.set_union2 A (tptp.set_difference B A)) (tptp.set_union2 A B))) (forall ((A $$unsorted)) (= (tptp.set_difference A tptp.empty_set) A)) _let_2 (forall ((A$$unsorted)) (=> (tptp.subset A tptp.empty_set) (= A tptp.empty_set))) (forall ((A $$unsorted) (B$$unsorted)) (= (tptp.set_difference (tptp.set_union2 A B) B) (tptp.set_difference A B))) (forall ((A $$unsorted) (B$$unsorted)) (=> (tptp.subset A B) (= B (tptp.set_union2 A (tptp.set_difference B A))))) (forall ((A $$unsorted) (B$$unsorted)) (= (tptp.set_difference A (tptp.set_difference A B)) (tptp.set_intersection2 A B))) (forall ((A $$unsorted)) (= (tptp.set_difference tptp.empty_set A) tptp.empty_set)) (forall ((A$$unsorted) (B $$unsorted)) (let ((_let_1 (tptp.disjoint A B))) (and (not (and (not _let_1) (forall ((C$$unsorted)) (not (tptp.in C (tptp.set_intersection2 A B)))))) (not (and (exists ((C $$unsorted)) (tptp.in C (tptp.set_intersection2 A B))) _let_1))))) (forall ((A$$unsorted) (B $$unsorted)) (not (and (tptp.subset A B) (tptp.proper_subset B A)))) _let_1 (forall ((A$$unsorted)) (=> (tptp.empty A) (= A tptp.empty_set))) (forall ((A $$unsorted) (B$$unsorted)) (not (and (tptp.in A B) (tptp.empty B)))) (forall ((A $$unsorted) (B$$unsorted)) (tptp.subset A (tptp.set_union2 A B))) (forall ((A $$unsorted) (B$$unsorted)) (not (and (tptp.empty A) (not (= A B)) (tptp.empty B)))) (forall ((A $$unsorted) (B$$unsorted) (C $$unsorted)) (=> (and (tptp.subset A B) (tptp.subset C B)) (tptp.subset (tptp.set_union2 A C) B))) true))))))))))))))))))))))))))))))))))))))))))))))))))) ) % SZS output end Proof for SEU140+2 ### Sample solution for NLP042+1 % SZS status Satisfiable for NLP042+1 % SZS output start FiniteModel for NLP042+1 ( ; cardinality of$$unsorted is 4 ; rep: (as @$$unsorted_0$$unsorted) ; rep: (as @$$unsorted_1$$unsorted) ; rep: (as @$$unsorted_2$$unsorted) ; rep: (as @$$unsorted_3$$unsorted) (define-fun tptp.woman (($x1 $$unsorted) (x2$$unsorted)) Bool (and (= (as
@$$unsorted_3$$unsorted) $x1) (= (as @$$unsorted_3$$unsorted)$x2)))
(define-fun tptp.female (($x1 $$unsorted) (x2$$unsorted)) Bool (and (= (as @$$unsorted_3$$unsorted)$x1) (= (as @$$unsorted_3$$unsorted) $x2))) (define-fun tptp.human_person (($x1 $$unsorted) (x2$$unsorted)) Bool (and (=
(as @$$unsorted_3$$unsorted) $x1) (= (as @$$unsorted_3$$unsorted)$x2)))
(define-fun tptp.animate (($x1 $$unsorted) (x2$$unsorted)) Bool (and (= (as @$$unsorted_3$$unsorted)$x1) (= (as @$$unsorted_3$$unsorted) $x2))) (define-fun tptp.human (($x1 $$unsorted) (x2$$unsorted)) Bool (and (= (as
@$$unsorted_3$$unsorted) $x1) (= (as @$$unsorted_3$$unsorted)$x2)))
(define-fun tptp.organism (($x1 $$unsorted) (x2$$unsorted)) Bool (and (= (as @$$unsorted_3$$unsorted)$x1) (= (as @$$unsorted_3$$unsorted) $x2))) (define-fun tptp.living (($x1 $$unsorted) (x2$$unsorted)) Bool (and (= (as
@$$unsorted_3$$unsorted) $x1) (= (as @$$unsorted_3$$unsorted)$x2)))
(define-fun tptp.impartial (($x1 $$unsorted) (x2$$unsorted)) Bool true) (define-fun tptp.entity (($x1 $$unsorted) (x2$$unsorted)) Bool (or (and (= (as
@$$unsorted_3$$unsorted) $x1) (= (as @$$unsorted_1$$unsorted)$x2)) (and (=
(as @$$unsorted_3$$unsorted) $x1) (= (as @$$unsorted_3$$unsorted)$x2))))
(define-fun tptp.mia_forename (($x1 $$unsorted) (x2$$unsorted)) Bool (and (= (as @$$unsorted_3$$unsorted)$x1) (= (as @$$unsorted_2$$unsorted) $x2))) (define-fun tptp.forename (($x1 $$unsorted) (x2$$unsorted)) Bool (and (= (as
@$$unsorted_3$$unsorted) $x1) (= (as @$$unsorted_2$$unsorted)$x2)))
(define-fun tptp.abstraction (($x1 $$unsorted) (x2$$unsorted)) Bool (and (= (as @$$unsorted_3$$unsorted)$x1) (= (as @$$unsorted_2$$unsorted) $x2))) (define-fun tptp.unisex (($x1 $$unsorted) (x2$$unsorted)) Bool (or (and (= (as
@$$unsorted_3$$unsorted) $x1) (= (as @$$unsorted_0$$unsorted)$x2)) (and (=
(as @$$unsorted_3$$unsorted) $x1) (= (as @$$unsorted_2$$unsorted)$x2)) (and
(= (as @$$unsorted_3$$unsorted) $x1) (= (as @$$unsorted_1$$unsorted)$x2))))
(define-fun tptp.general (($x1 $$unsorted) (x2$$unsorted)) Bool (and (= (as @$$unsorted_3$$unsorted)$x1) (= (as @$$unsorted_2$$unsorted) $x2))) (define-fun tptp.nonhuman (($x1 $$unsorted) (x2$$unsorted)) Bool (and (= (as
@$$unsorted_3$$unsorted) $x1) (= (as @$$unsorted_2$$unsorted)$x2)))
(define-fun tptp.thing (($x1 $$unsorted) (x2$$unsorted)) Bool true) (define-fun tptp.relation (($x1 $$unsorted) (x2$$unsorted)) Bool (and (= (as
@$$unsorted_3$$unsorted) $x1) (= (as @$$unsorted_2$$unsorted)$x2)))
(define-fun tptp.relname (($x1 $$unsorted) (x2$$unsorted)) Bool (and (= (as @$$unsorted_3$$unsorted)$x1) (= (as @$$unsorted_2$$unsorted) $x2))) (define-fun tptp.object (($x1 $$unsorted) (x2$$unsorted)) Bool (and (= (as
@$$unsorted_3$$unsorted) $x1) (= (as @$$unsorted_1$$unsorted)$x2)))
(define-fun tptp.nonliving (($x1 $$unsorted) (x2$$unsorted)) Bool (and (= (as @$$unsorted_3$$unsorted)$x1) (= (as @$$unsorted_1$$unsorted) $x2))) (define-fun tptp.existent (($x1 $$unsorted) (x2$$unsorted)) Bool (or (and (=
(as @$$unsorted_3$$unsorted) $x1) (= (as @$$unsorted_1$$unsorted)$x2)) (and
(= (as @$$unsorted_3$$unsorted) $x1) (= (as @$$unsorted_3$$unsorted)$x2))))
(define-fun tptp.specific (($x1 $$unsorted) (x2$$unsorted)) Bool (or (and (= (as @$$unsorted_3$$unsorted)$x1) (= (as @$$unsorted_1$$unsorted) $x2)) (and (= (as @$$unsorted_3$$unsorted)$x1) (= (as @$$unsorted_0$$unsorted) $x2)) (and (= (as @$$unsorted_3$$unsorted)$x1) (= (as @$$unsorted_3$$unsorted)
$x2)))) (define-fun tptp.substance_matter (($x1 $$unsorted) (x2$$unsorted)) Bool (and
(= (as @$$unsorted_3$$unsorted) $x1) (= (as @$$unsorted_1$$unsorted)$x2)))
(define-fun tptp.food (($x1 $$unsorted) (x2$$unsorted)) Bool (and (= (as @$$unsorted_3$$unsorted)$x1) (= (as @$$unsorted_1$$unsorted) $x2))) (define-fun tptp.beverage (($x1 $$unsorted) (x2$$unsorted)) Bool (and (= (as
@$$unsorted_3$$unsorted) $x1) (= (as @$$unsorted_1$$unsorted)$x2)))
(define-fun tptp.shake_beverage (($x1 $$unsorted) (x2$$unsorted)) Bool (and (= (as @$$unsorted_3$$unsorted)$x1) (= (as @$$unsorted_1$$unsorted) $x2))) (define-fun tptp.order (($x1 $$unsorted) (x2$$unsorted)) Bool (and (= (as
@$$unsorted_3$$unsorted) $x1) (= (as @$$unsorted_0$$unsorted)$x2)))
(define-fun tptp.event (($x1 $$unsorted) (x2$$unsorted)) Bool (and (= (as @$$unsorted_3$$unsorted)$x1) (= (as @$$unsorted_0$$unsorted) $x2))) (define-fun tptp.eventuality (($x1 $$unsorted) (x2$$unsorted)) Bool (and (=
(as @$$unsorted_3$$unsorted) $x1) (= (as @$$unsorted_0$$unsorted)$x2)))
(define-fun tptp.nonexistent (($x1 $$unsorted) (x2$$unsorted)) Bool (and (= (as @$$unsorted_3$$unsorted)$x1) (= (as @$$unsorted_0$$unsorted) $x2))) (define-fun tptp.singleton (($x1 $$unsorted) (x2$$unsorted)) Bool true)
(define-fun tptp.act (($x1 $$unsorted) (x2$$unsorted)) Bool (and (= (as @$$unsorted_3$$unsorted)$x1) (= (as @$$unsorted_0$$unsorted) $x2))) (define-fun tptp.of (($x1 $$unsorted) (x2$$unsorted) ($x3 $$unsorted)) Bool true) (define-fun tptp.nonreflexive ((x1$$unsorted) ($x2 $$unsorted)) Bool (and (= (as @$$unsorted_3 $$unsorted) x1) (= (as @$$unsorted_0 $$unsorted) x2))) (define-fun tptp.agent ((x1$$unsorted) ($x2 $$unsorted) (x3$$unsorted)) Bool (and (not (and (= (as @$$unsorted_3$$unsorted)$x1) (= (as @$$unsorted_0$$unsorted) $x2) (= (as @$$unsorted_1$$unsorted)$x3))) (not (and (= (as
@$$unsorted_3$$unsorted) $x1) (= (as @$$unsorted_0$$unsorted)$x2) (= (as
@$$unsorted_0$$unsorted) $x3))) (not (and (= (as @$$unsorted_3$$unsorted)$x1)
(= (as @$$unsorted_0$$unsorted) $x2) (= (as @$$unsorted_2$$unsorted)$x3)))))
(define-fun tptp.patient (($x1 $$unsorted) (x2$$unsorted) ($x3 $$unsorted)) Bool (not (and (= (as @$$unsorted_3 $$unsorted) x1) (= (as @$$unsorted_0
$$unsorted) x2) (= (as @$$unsorted_3 $$unsorted) x3)))) (define-fun tptp.actual_world ((_arg_1$$unsorted)) Bool true)
(define-fun tptp.past ((_arg_1 $$unsorted) (_arg_2$$unsorted)) Bool true)
)
% SZS output end FiniteModel for NLP042+1

### Sample solution for SWV017+1

% SZS status Satisfiable for SWV017+1
% SZS output start FiniteModel for SWV017+1
(
; cardinality of $$unsorted is 2 ; rep: (as @$$unsorted_0 $$unsorted) ; rep: (as @$$unsorted_1 $$unsorted) (define-fun tptp.at ()$$unsorted (as @$$unsorted_0$$unsorted))
(define-fun tptp.t () $$unsorted (as @$$unsorted_0 $$unsorted)) (define-fun tptp.key ((x1$$unsorted) ($x2 $$unsorted))$$unsorted (as @$$unsorted_0$$unsorted)) (define-fun tptp.a_holds (($x1 $$unsorted)) Bool true) (define-fun tptp.a ()$$unsorted (as @$$unsorted_0$$unsorted))
(define-fun tptp.party_of_protocol (($x1 $$unsorted)) Bool true) (define-fun tptp.b ()$$unsorted (as @$$unsorted_0$$unsorted)) (define-fun tptp.an_a_nonce () $$unsorted (as @$$unsorted_0 $$unsorted)) (define-fun tptp.pair ((x1$$unsorted) ($x2 $$unsorted))$$unsorted (as
@$$unsorted_0$$unsorted))
(define-fun tptp.sent (($x1 $$unsorted) (x2$$unsorted) ($x3 $$unsorted))$$unsorted (as @$$unsorted_0$$unsorted))
(define-fun tptp.message (($x1 $$unsorted)) Bool true) (define-fun tptp.a_stored ((x1$$unsorted)) Bool true) (define-fun tptp.quadruple (($x1 $$unsorted) (x2$$unsorted) ($x3 $$unsorted) (x4$$unsorted)) $$unsorted (as @$$unsorted_0 $$unsorted)) (define-fun tptp.encrypt ((x1$$unsorted) ($x2 $$unsorted))$$unsorted (as
@$$unsorted_0$$unsorted))
(define-fun tptp.triple (($x1 $$unsorted) (x2$$unsorted) ($x3 $$unsorted))$$unsorted (as @$$unsorted_0$$unsorted))
(define-fun tptp.bt () $$unsorted (as @$$unsorted_0 $$unsorted)) (define-fun tptp.b_holds ((x1$$unsorted)) Bool true)
(define-fun tptp.fresh_to_b (($x1 $$unsorted)) Bool true) (define-fun tptp.generate_b_nonce ((x1$$unsorted)) $$unsorted (as @$$unsorted_0 $$unsorted)) (define-fun tptp.generate_expiration_time ((x1$$unsorted)) $$unsorted (as @$$unsorted_0 $$unsorted)) (define-fun tptp.b_stored ((x1$$unsorted)) Bool true) (define-fun tptp.a_key (($x1 $$unsorted)) Bool (= (as @$$unsorted_1 $$unsorted) x1)) (define-fun tptp.t_holds ((x1$$unsorted)) Bool true)
(define-fun tptp.a_nonce (($x1 $$unsorted)) Bool (= (as @$$unsorted_0 $$unsorted) x1)) (define-fun tptp.generate_key ((x1$$unsorted)) $$unsorted (as @$$unsorted_1 $$unsorted)) (define-fun tptp.intruder_message ((x1$$unsorted)) Bool true) (define-fun tptp.intruder_holds (($x1 $$unsorted)) Bool true) (define-fun tptp.an_intruder_nonce ()$$unsorted (as @$$unsorted_0$$unsorted))
(define-fun tptp.fresh_intruder_nonce (($x1 $$unsorted)) Bool true) (define-fun tptp.generate_intruder_nonce ((x1$$unsorted)) $$unsorted (as @$$unsorted_0$$unsorted)) ) % SZS output end FiniteModel for SWV017+1 ## Drodi 3.5.1 Oscar Contreras Amateur Programmer, Spain ### Sample solution for SEU140+2 % SZS output start CNFRefutation for SEU140+2 fof(f5,axiom,( (! [A,B] :( A = B<=> ( subset(A,B)& subset(B,A) ) ) )), file('/run/media/oscar/Elements/temp/TPTP-v8.1.2/Problems/SEU140+2.p')). fof(f8,axiom,( (! [A,B] :( subset(A,B)<=> (! [C] :( in(C,A)=> in(C,B) ) )) )), file('/run/media/oscar/Elements/temp/TPTP-v8.1.2/Problems/SEU140+2.p')). fof(f32,lemma,( (! [A,B,C] :( ( subset(A,B)& subset(B,C) )=> subset(A,C) ) )), file('/run/media/oscar/Elements/temp/TPTP-v8.1.2/Problems/SEU140+2.p')). fof(f43,lemma,( (! [A,B] :( ~ ( ~ disjoint(A,B)& (! [C] :~ ( in(C,A)& in(C,B) ) ))& ~ ( (? [C] :( in(C,A)& in(C,B) ))& disjoint(A,B) ) ) )), file('/run/media/oscar/Elements/temp/TPTP-v8.1.2/Problems/SEU140+2.p')). fof(f51,conjecture,( (! [A,B,C] :( ( subset(A,B)& disjoint(B,C) )=> disjoint(A,C) ) )), file('/run/media/oscar/Elements/temp/TPTP-v8.1.2/Problems/SEU140+2.p')). fof(f52,negated_conjecture,( ~((! [A,B,C] :( ( subset(A,B)& disjoint(B,C) )=> disjoint(A,C) ) ))), inference(negated_conjecture,[status(cth)],[f51])). fof(f64,plain,( ![A,B]: ((~A=B|(subset(A,B)&subset(B,A)))&(A=B|(~subset(A,B)|~subset(B,A))))), inference(NNF_transformation,[status(esa)],[f5])). fof(f65,plain,( (![A,B]: (~A=B|(subset(A,B)&subset(B,A))))&(![A,B]: (A=B|(~subset(A,B)|~subset(B,A))))), inference(miniscoping,[status(esa)],[f64])). fof(f66,plain,( ![X0,X1]: (~X0=X1|subset(X0,X1))), inference(cnf_transformation,[status(esa)],[f65])). fof(f83,plain,( ![A,B]: (subset(A,B)<=>(![C]: (~in(C,A)|in(C,B))))), inference(pre_NNF_transformation,[status(esa)],[f8])). fof(f84,plain,( ![A,B]: ((~subset(A,B)|(![C]: (~in(C,A)|in(C,B))))&(subset(A,B)|(?[C]: (in(C,A)&~in(C,B)))))), inference(NNF_transformation,[status(esa)],[f83])). fof(f85,plain,( (![A,B]: (~subset(A,B)|(![C]: (~in(C,A)|in(C,B)))))&(![A,B]: (subset(A,B)|(?[C]: (in(C,A)&~in(C,B)))))), inference(miniscoping,[status(esa)],[f84])). fof(f86,plain,( (![A,B]: (~subset(A,B)|(![C]: (~in(C,A)|in(C,B)))))&(![A,B]: (subset(A,B)|(in(sk0_2(B,A),A)&~in(sk0_2(B,A),B))))), inference(skolemization,[status(esa)],[f85])). fof(f87,plain,( ![X0,X1,X2]: (~subset(X0,X1)|~in(X2,X0)|in(X2,X1))), inference(cnf_transformation,[status(esa)],[f86])). fof(f148,plain,( ![A,B,C]: ((~subset(A,B)|~subset(B,C))|subset(A,C))), inference(pre_NNF_transformation,[status(esa)],[f32])). fof(f149,plain,( ![A,C]: ((![B]: (~subset(A,B)|~subset(B,C)))|subset(A,C))), inference(miniscoping,[status(esa)],[f148])). fof(f150,plain,( ![X0,X1,X2]: (~subset(X0,X1)|~subset(X1,X2)|subset(X0,X2))), inference(cnf_transformation,[status(esa)],[f149])). fof(f173,plain,( ![A,B]: ((disjoint(A,B)|(?[C]: (in(C,A)&in(C,B))))&((![C]: (~in(C,A)|~in(C,B)))|~disjoint(A,B)))), inference(pre_NNF_transformation,[status(esa)],[f43])). fof(f174,plain,( (![A,B]: (disjoint(A,B)|(?[C]: (in(C,A)&in(C,B)))))&(![A,B]: ((![C]: (~in(C,A)|~in(C,B)))|~disjoint(A,B)))), inference(miniscoping,[status(esa)],[f173])). fof(f175,plain,( (![A,B]: (disjoint(A,B)|(in(sk0_8(B,A),A)&in(sk0_8(B,A),B))))&(![A,B]: ((![C]: (~in(C,A)|~in(C,B)))|~disjoint(A,B)))), inference(skolemization,[status(esa)],[f174])). fof(f176,plain,( ![X0,X1]: (disjoint(X0,X1)|in(sk0_8(X1,X0),X0))), inference(cnf_transformation,[status(esa)],[f175])). fof(f177,plain,( ![X0,X1]: (disjoint(X0,X1)|in(sk0_8(X1,X0),X1))), inference(cnf_transformation,[status(esa)],[f175])). fof(f178,plain,( ![X0,X1,X2]: (~in(X0,X1)|~in(X0,X2)|~disjoint(X1,X2))), inference(cnf_transformation,[status(esa)],[f175])). fof(f193,plain,( (?[A,B,C]: ((subset(A,B)&disjoint(B,C))&~disjoint(A,C)))), inference(pre_NNF_transformation,[status(esa)],[f52])). fof(f194,plain,( ?[A,C]: ((?[B]: (subset(A,B)&disjoint(B,C)))&~disjoint(A,C))), inference(miniscoping,[status(esa)],[f193])). fof(f195,plain,( ((subset(sk0_10,sk0_12)&disjoint(sk0_12,sk0_11))&~disjoint(sk0_10,sk0_11))), inference(skolemization,[status(esa)],[f194])). fof(f196,plain,( subset(sk0_10,sk0_12)), inference(cnf_transformation,[status(esa)],[f195])). fof(f197,plain,( disjoint(sk0_12,sk0_11)), inference(cnf_transformation,[status(esa)],[f195])). fof(f198,plain,( ~disjoint(sk0_10,sk0_11)), inference(cnf_transformation,[status(esa)],[f195])). fof(f210,plain,( ![X0]: (subset(X0,X0))), inference(destructive_equality_resolution,[status(esa)],[f66])). fof(f242,plain,( ![X0]: (~subset(X0,sk0_10)|subset(X0,sk0_12))), inference(resolution,[status(thm)],[f150,f196])). fof(f243,plain,( ![X0]: (~in(X0,sk0_12)|~in(X0,sk0_11))), inference(resolution,[status(thm)],[f178,f197])). fof(f246,plain,( ![X0,X1]: (~subset(X0,sk0_10)|~in(X1,X0)|in(X1,sk0_12))), inference(resolution,[status(thm)],[f242,f87])). fof(f250,plain,( in(sk0_8(sk0_11,sk0_10),sk0_10)), inference(resolution,[status(thm)],[f176,f198])). fof(f254,plain,( in(sk0_8(sk0_11,sk0_10),sk0_11)), inference(resolution,[status(thm)],[f177,f198])). fof(f291,plain,( spl0_8 <=> in(sk0_8(sk0_11,sk0_10),sk0_12)), introduced(split_symbol_definition)). fof(f292,plain,( in(sk0_8(sk0_11,sk0_10),sk0_12)|~spl0_8), inference(component_clause,[status(thm)],[f291])). fof(f296,plain,( spl0_9 <=> subset(sk0_10,sk0_10)), introduced(split_symbol_definition)). fof(f298,plain,( ~subset(sk0_10,sk0_10)|spl0_9), inference(component_clause,[status(thm)],[f296])). fof(f299,plain,( ~subset(sk0_10,sk0_10)|in(sk0_8(sk0_11,sk0_10),sk0_12)), inference(resolution,[status(thm)],[f246,f250])). fof(f300,plain,( ~spl0_9|spl0_8), inference(split_clause,[status(thm)],[f299,f296,f291])). fof(f313,plain,($false|spl0_9),
inference(forward_subsumption_resolution,[status(thm)],[f298,f210])).
fof(f314,plain,(
spl0_9),
fof(f999,plain,(
~in(sk0_8(sk0_11,sk0_10),sk0_11)|~spl0_8),
inference(resolution,[status(thm)],[f243,f292])).
fof(f1000,plain,(
$false|~spl0_8), inference(forward_subsumption_resolution,[status(thm)],[f999,f254])). fof(f1001,plain,( ~spl0_8), inference(contradiction_clause,[status(thm)],[f1000])). fof(f1002,plain,($false),
inference(sat_refutation,[status(thm)],[f300,f314,f1001])).
% SZS output end CNFRefutation for SEU140+2.p

### Sample solution for BOO001-1

% SZS output start CNFRefutation for BOO001-1
fof(f1,axiom,(
(![V,W,X,Y,Z]: (multiply(multiply(V,W,X),Y,multiply(V,W,Z)) = multiply(V,W,multiply(X,Y,Z)) ))),
file('/run/media/oscar/Elements/temp/TPTP-v8.1.2/Problems/BOO001-1.p')).
fof(f2,axiom,(
(![Y,X]: (multiply(Y,X,X) = X ))),
file('/run/media/oscar/Elements/temp/TPTP-v8.1.2/Problems/BOO001-1.p')).
fof(f3,axiom,(
(![X,Y]: (multiply(X,X,Y) = X ))),
file('/run/media/oscar/Elements/temp/TPTP-v8.1.2/Problems/BOO001-1.p')).
fof(f4,axiom,(
(![Y,X]: (multiply(inverse(Y),Y,X) = X ))),
file('/run/media/oscar/Elements/temp/TPTP-v8.1.2/Problems/BOO001-1.p')).
fof(f5,axiom,(
(![X,Y]: (multiply(X,Y,inverse(Y)) = X ))),
file('/run/media/oscar/Elements/temp/TPTP-v8.1.2/Problems/BOO001-1.p')).
fof(f6,negated_conjecture,(
inverse(inverse(a)) != a ),
file('/run/media/oscar/Elements/temp/TPTP-v8.1.2/Problems/BOO001-1.p')).
fof(f7,plain,(
![X0,X1,X2,X3,X4]: (multiply(multiply(X0,X1,X2),X3,multiply(X0,X1,X4))=multiply(X0,X1,multiply(X2,X3,X4)))),
inference(cnf_transformation,[status(esa)],[f1])).
fof(f8,plain,(
![X0,X1]: (multiply(X0,X1,X1)=X1)),
inference(cnf_transformation,[status(esa)],[f2])).
fof(f9,plain,(
![X0,X1]: (multiply(X0,X0,X1)=X0)),
inference(cnf_transformation,[status(esa)],[f3])).
fof(f10,plain,(
![X0,X1]: (multiply(inverse(X0),X0,X1)=X1)),
inference(cnf_transformation,[status(esa)],[f4])).
fof(f11,plain,(
![X0,X1]: (multiply(X0,X1,inverse(X1))=X0)),
inference(cnf_transformation,[status(esa)],[f5])).
fof(f12,plain,(
~inverse(inverse(a))=a),
inference(cnf_transformation,[status(esa)],[f6])).
fof(f18,plain,(
![X0,X1,X2,X3]: (multiply(X0,X1,multiply(X0,X2,X3))=multiply(X0,X2,multiply(inverse(X2),X1,X3)))),
inference(paramodulation,[status(thm)],[f11,f7])).
fof(f55,plain,(
![X0,X1,X2]: (multiply(X0,inverse(X1),multiply(X0,X1,X2))=multiply(X0,X1,inverse(X1)))),
inference(paramodulation,[status(thm)],[f9,f18])).
fof(f56,plain,(
![X0,X1,X2]: (multiply(X0,inverse(X1),multiply(X0,X1,X2))=X0)),
inference(forward_demodulation,[status(thm)],[f11,f55])).
fof(f133,plain,(
![X0,X1]: (multiply(X0,inverse(X1),X1)=X0)),
inference(paramodulation,[status(thm)],[f8,f56])).
fof(f147,plain,(
![X0]: (X0=inverse(inverse(X0)))),
inference(paramodulation,[status(thm)],[f10,f133])).
fof(f161,plain,(
~a=a),
inference(backward_demodulation,[status(thm)],[f147,f12])).
fof(f162,plain,(
$false), inference(trivial_equality_resolution,[status(esa)],[f161])). % SZS output end CNFRefutation for BOO001-1.p ## Duper 1.0 Joshua Clune Carnegie Mellon University, USA ### Sample solution for ITP029^2 SZS status Theorem for theBenchmark.p SZS output start Proof for theBenchmark.p Clause #0 (by assumption #[]): Eq (Eq (h a2) (h b)) True Clause #1 (by assumption #[]): Eq (ord_less int (h b) (h a2)) True Clause #73 (by assumption #[]): Eq (âˆ€ (A : Type), order A â†’ âˆ€ (A3 : A), Not (ord_less A A3 A3)) True Clause #252 (by assumption #[]): Eq (order int) True Clause #273 (by clausification #[0]): Eq (h a2) (h b) Clause #274 (by forward demodulation #[1, 273]): Eq (ord_less int (h a2) (h a2)) True Clause #1057 (by clausification #[73]): âˆ€ (a : Type), Eq (order a â†’ âˆ€ (A3 : a), Not (ord_less a A3 A3)) True Clause #1058 (by clausification #[1057]): âˆ€ (a : Type), Or (Eq (order a) False) (Eq (âˆ€ (A3 : a), Not (ord_less a A3 A3)) True) Clause #1059 (by clausification #[1058]): âˆ€ (a : Type) (a_1 : a), Or (Eq (order a) False) (Eq (Not (ord_less a a_1 a_1)) True) Clause #1060 (by clausification #[1059]): âˆ€ (a : Type) (a_1 : a), Or (Eq (order a) False) (Eq (ord_less a a_1 a_1) False) Clause #1062 (by superposition #[1060, 252]): âˆ€ (a : int), Or (Eq (ord_less int a a) False) (Eq False True) Clause #1076 (by clausification #[1062]): âˆ€ (a : int), Eq (ord_less int a a) False Clause #1077 (by superposition #[1076, 274]): Eq False True Clause #1094 (by clausification #[1077]): False SZS output end Proof for theBenchmark.p ### Sample solution for PUZ031+1 SZS status Theorem for theBenchmark.p SZS output start Proof for theBenchmark.p Clause #0 (by assumption #[]): Eq (âˆ€ (X : Iota), wolf X â†’ animal X) True Clause #1 (by assumption #[]): Eq (Exists fun X1 => wolf X1) True Clause #2 (by assumption #[]): Eq (âˆ€ (X : Iota), fox X â†’ animal X) True Clause #3 (by assumption #[]): Eq (Exists fun X1 => fox X1) True Clause #4 (by assumption #[]): Eq (âˆ€ (X : Iota), bird X â†’ animal X) True Clause #5 (by assumption #[]): Eq (Exists fun X1 => bird X1) True Clause #8 (by assumption #[]): Eq (âˆ€ (X : Iota), snail X â†’ animal X) True Clause #9 (by assumption #[]): Eq (Exists fun X1 => snail X1) True Clause #10 (by assumption #[]): Eq (Exists fun X => grain X) True Clause #11 (by assumption #[]): Eq (âˆ€ (X1 : Iota), grain X1 â†’ plant X1) True Clause #12 (by assumption #[]): Eq (âˆ€ (X : Iota), animal X â†’ Or (âˆ€ (Y : Iota), plant Y â†’ eats X Y) (âˆ€ (Y1 : Iota), And (And (animal Y1) (much_smaller Y1 X)) (Exists fun Z => And (plant Z) (eats Y1 Z)) â†’ eats X Y1)) True Clause #13 (by assumption #[]): Eq (âˆ€ (X Y : Iota), And (bird Y) (Or (snail X) (caterpillar X)) â†’ much_smaller X Y) True Clause #14 (by assumption #[]): Eq (âˆ€ (X Y : Iota), And (bird X) (fox Y) â†’ much_smaller X Y) True Clause #15 (by assumption #[]): Eq (âˆ€ (X Y : Iota), And (fox X) (wolf Y) â†’ much_smaller X Y) True Clause #16 (by assumption #[]): Eq (âˆ€ (X Y : Iota), And (wolf X) (Or (fox Y) (grain Y)) â†’ Not (eats X Y)) True Clause #18 (by assumption #[]): Eq (âˆ€ (X Y : Iota), And (bird X) (snail Y) â†’ Not (eats X Y)) True Clause #19 (by assumption #[]): Eq (âˆ€ (X : Iota), Or (caterpillar X) (snail X) â†’ Exists fun Y => And (plant Y) (eats X Y)) True Clause #20 (by assumption #[]): Eq (Not (Exists fun X => Exists fun Y => And (And (animal X) (animal Y)) (Exists fun Z => And (And (grain Z) (eats Y Z)) (eats X Y)))) True Clause #21 (by clausification #[11]): âˆ€ (a : Iota), Eq (grain a â†’ plant a) True Clause #22 (by clausification #[21]): âˆ€ (a : Iota), Or (Eq (grain a) False) (Eq (plant a) True) Clause #23 (by clausification #[8]): âˆ€ (a : Iota), Eq (snail a â†’ animal a) True Clause #24 (by clausification #[23]): âˆ€ (a : Iota), Or (Eq (snail a) False) (Eq (animal a) True) Clause #27 (by clausification #[2]): âˆ€ (a : Iota), Eq (fox a â†’ animal a) True Clause #28 (by clausification #[27]): âˆ€ (a : Iota), Or (Eq (fox a) False) (Eq (animal a) True) Clause #29 (by clausification #[4]): âˆ€ (a : Iota), Eq (bird a â†’ animal a) True Clause #30 (by clausification #[29]): âˆ€ (a : Iota), Or (Eq (bird a) False) (Eq (animal a) True) Clause #31 (by clausification #[0]): âˆ€ (a : Iota), Eq (wolf a â†’ animal a) True Clause #32 (by clausification #[31]): âˆ€ (a : Iota), Or (Eq (wolf a) False) (Eq (animal a) True) Clause #33 (by betaEtaReduce #[1]): Eq (Exists wolf) True Clause #34 (by clausification #[33]): âˆ€ (a : Iota), Eq (wolf (skS.0 0 a)) True Clause #35 (by superposition #[34, 32]): âˆ€ (a : Iota), Or (Eq True False) (Eq (animal (skS.0 0 a)) True) Clause #39 (by betaEtaReduce #[9]): Eq (Exists snail) True Clause #40 (by clausification #[39]): âˆ€ (a : Iota), Eq (snail (skS.0 2 a)) True Clause #41 (by superposition #[40, 24]): âˆ€ (a : Iota), Or (Eq True False) (Eq (animal (skS.0 2 a)) True) Clause #42 (by betaEtaReduce #[10]): Eq (Exists grain) True Clause #43 (by clausification #[42]): âˆ€ (a : Iota), Eq (grain (skS.0 3 a)) True Clause #44 (by superposition #[43, 22]): âˆ€ (a : Iota), Or (Eq True False) (Eq (plant (skS.0 3 a)) True) Clause #45 (by betaEtaReduce #[5]): Eq (Exists bird) True Clause #46 (by clausification #[45]): âˆ€ (a : Iota), Eq (bird (skS.0 4 a)) True Clause #47 (by superposition #[46, 30]): âˆ€ (a : Iota), Or (Eq True False) (Eq (animal (skS.0 4 a)) True) Clause #48 (by betaEtaReduce #[3]): Eq (Exists fox) True Clause #49 (by clausification #[48]): âˆ€ (a : Iota), Eq (fox (skS.0 5 a)) True Clause #50 (by superposition #[49, 28]): âˆ€ (a : Iota), Or (Eq True False) (Eq (animal (skS.0 5 a)) True) Clause #51 (by clausification #[15]): âˆ€ (a : Iota), Eq (âˆ€ (Y : Iota), And (fox a) (wolf Y) â†’ much_smaller a Y) True Clause #52 (by clausification #[51]): âˆ€ (a a_1 : Iota), Eq (And (fox a) (wolf a_1) â†’ much_smaller a a_1) True Clause #53 (by clausification #[52]): âˆ€ (a a_1 : Iota), Or (Eq (And (fox a) (wolf a_1)) False) (Eq (much_smaller a a_1) True) Clause #54 (by clausification #[53]): âˆ€ (a a_1 : Iota), Or (Eq (much_smaller a a_1) True) (Or (Eq (fox a) False) (Eq (wolf a_1) False)) Clause #55 (by superposition #[54, 49]): âˆ€ (a a_1 : Iota), Or (Eq (much_smaller (skS.0 5 a) a_1) True) (Or (Eq (wolf a_1) False) (Eq False True)) Clause #56 (by clausification #[14]): âˆ€ (a : Iota), Eq (âˆ€ (Y : Iota), And (bird a) (fox Y) â†’ much_smaller a Y) True Clause #57 (by clausification #[56]): âˆ€ (a a_1 : Iota), Eq (And (bird a) (fox a_1) â†’ much_smaller a a_1) True Clause #58 (by clausification #[57]): âˆ€ (a a_1 : Iota), Or (Eq (And (bird a) (fox a_1)) False) (Eq (much_smaller a a_1) True) Clause #59 (by clausification #[58]): âˆ€ (a a_1 : Iota), Or (Eq (much_smaller a a_1) True) (Or (Eq (bird a) False) (Eq (fox a_1) False)) Clause #60 (by superposition #[59, 46]): âˆ€ (a a_1 : Iota), Or (Eq (much_smaller (skS.0 4 a) a_1) True) (Or (Eq (fox a_1) False) (Eq False True)) Clause #61 (by clausification #[13]): âˆ€ (a : Iota), Eq (âˆ€ (Y : Iota), And (bird Y) (Or (snail a) (caterpillar a)) â†’ much_smaller a Y) True Clause #62 (by clausification #[61]): âˆ€ (a a_1 : Iota), Eq (And (bird a) (Or (snail a_1) (caterpillar a_1)) â†’ much_smaller a_1 a) True Clause #63 (by clausification #[62]): âˆ€ (a a_1 : Iota), Or (Eq (And (bird a) (Or (snail a_1) (caterpillar a_1))) False) (Eq (much_smaller a_1 a) True) Clause #64 (by clausification #[63]): âˆ€ (a a_1 : Iota), Or (Eq (much_smaller a a_1) True) (Or (Eq (bird a_1) False) (Eq (Or (snail a) (caterpillar a)) False)) Clause #66 (by clausification #[64]): âˆ€ (a a_1 : Iota), Or (Eq (much_smaller a a_1) True) (Or (Eq (bird a_1) False) (Eq (snail a) False)) Clause #73 (by clausification #[18]): âˆ€ (a : Iota), Eq (âˆ€ (Y : Iota), And (bird a) (snail Y) â†’ Not (eats a Y)) True Clause #74 (by clausification #[73]): âˆ€ (a a_1 : Iota), Eq (And (bird a) (snail a_1) â†’ Not (eats a a_1)) True Clause #75 (by clausification #[74]): âˆ€ (a a_1 : Iota), Or (Eq (And (bird a) (snail a_1)) False) (Eq (Not (eats a a_1)) True) Clause #76 (by clausification #[75]): âˆ€ (a a_1 : Iota), Or (Eq (Not (eats a a_1)) True) (Or (Eq (bird a) False) (Eq (snail a_1) False)) Clause #77 (by clausification #[76]): âˆ€ (a a_1 : Iota), Or (Eq (bird a) False) (Or (Eq (snail a_1) False) (Eq (eats a a_1) False)) Clause #78 (by superposition #[77, 46]): âˆ€ (a a_1 : Iota), Or (Eq (snail a) False) (Or (Eq (eats (skS.0 4 a_1) a) False) (Eq False True)) Clause #79 (by clausification #[12]): âˆ€ (a : Iota), Eq (animal a â†’ Or (âˆ€ (Y : Iota), plant Y â†’ eats a Y) (âˆ€ (Y1 : Iota), And (And (animal Y1) (much_smaller Y1 a)) (Exists fun Z => And (plant Z) (eats Y1 Z)) â†’ eats a Y1)) True Clause #80 (by clausification #[79]): âˆ€ (a : Iota), Or (Eq (animal a) False) (Eq (Or (âˆ€ (Y : Iota), plant Y â†’ eats a Y) (âˆ€ (Y1 : Iota), And (And (animal Y1) (much_smaller Y1 a)) (Exists fun Z => And (plant Z) (eats Y1 Z)) â†’ eats a Y1)) True) Clause #81 (by clausification #[80]): âˆ€ (a : Iota), Or (Eq (animal a) False) (Or (Eq (âˆ€ (Y : Iota), plant Y â†’ eats a Y) True) (Eq (âˆ€ (Y1 : Iota), And (And (animal Y1) (much_smaller Y1 a)) (Exists fun Z => And (plant Z) (eats Y1 Z)) â†’ eats a Y1) True)) Clause #82 (by clausification #[81]): âˆ€ (a a_1 : Iota), Or (Eq (animal a) False) (Or (Eq (âˆ€ (Y1 : Iota), And (And (animal Y1) (much_smaller Y1 a)) (Exists fun Z => And (plant Z) (eats Y1 Z)) â†’ eats a Y1) True) (Eq (plant a_1 â†’ eats a a_1) True)) Clause #83 (by clausification #[82]): âˆ€ (a a_1 a_2 : Iota), Or (Eq (animal a) False) (Or (Eq (plant a_1 â†’ eats a a_1) True) (Eq (And (And (animal a_2) (much_smaller a_2 a)) (Exists fun Z => And (plant Z) (eats a_2 Z)) â†’ eats a a_2) True)) Clause #84 (by clausification #[83]): âˆ€ (a a_1 a_2 : Iota), Or (Eq (animal a) False) (Or (Eq (And (And (animal a_1) (much_smaller a_1 a)) (Exists fun Z => And (plant Z) (eats a_1 Z)) â†’ eats a a_1) True) (Or (Eq (plant a_2) False) (Eq (eats a a_2) True))) Clause #85 (by clausification #[84]): âˆ€ (a a_1 a_2 : Iota), Or (Eq (animal a) False) (Or (Eq (plant a_1) False) (Or (Eq (eats a a_1) True) (Or (Eq (And (And (animal a_2) (much_smaller a_2 a)) (Exists fun Z => And (plant Z) (eats a_2 Z))) False) (Eq (eats a a_2) True)))) Clause #86 (by clausification #[85]): âˆ€ (a a_1 a_2 : Iota), Or (Eq (animal a) False) (Or (Eq (plant a_1) False) (Or (Eq (eats a a_1) True) (Or (Eq (eats a a_2) True) (Or (Eq (And (animal a_2) (much_smaller a_2 a)) False) (Eq (Exists fun Z => And (plant Z) (eats a_2 Z)) False))))) Clause #87 (by clausification #[86]): âˆ€ (a a_1 a_2 : Iota), Or (Eq (animal a) False) (Or (Eq (plant a_1) False) (Or (Eq (eats a a_1) True) (Or (Eq (eats a a_2) True) (Or (Eq (Exists fun Z => And (plant Z) (eats a_2 Z)) False) (Or (Eq (animal a_2) False) (Eq (much_smaller a_2 a) False)))))) Clause #88 (by clausification #[87]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (animal a) False) (Or (Eq (plant a_1) False) (Or (Eq (eats a a_1) True) (Or (Eq (eats a a_2) True) (Or (Eq (animal a_2) False) (Or (Eq (much_smaller a_2 a) False) (Eq (And (plant a_3) (eats a_2 a_3)) False)))))) Clause #89 (by clausification #[88]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (animal a) False) (Or (Eq (plant a_1) False) (Or (Eq (eats a a_1) True) (Or (Eq (eats a a_2) True) (Or (Eq (animal a_2) False) (Or (Eq (much_smaller a_2 a) False) (Or (Eq (plant a_3) False) (Eq (eats a_2 a_3) False))))))) Clause #90 (by clausification #[16]): âˆ€ (a : Iota), Eq (âˆ€ (Y : Iota), And (wolf a) (Or (fox Y) (grain Y)) â†’ Not (eats a Y)) True Clause #91 (by clausification #[90]): âˆ€ (a a_1 : Iota), Eq (And (wolf a) (Or (fox a_1) (grain a_1)) â†’ Not (eats a a_1)) True Clause #92 (by clausification #[91]): âˆ€ (a a_1 : Iota), Or (Eq (And (wolf a) (Or (fox a_1) (grain a_1))) False) (Eq (Not (eats a a_1)) True) Clause #93 (by clausification #[92]): âˆ€ (a a_1 : Iota), Or (Eq (Not (eats a a_1)) True) (Or (Eq (wolf a) False) (Eq (Or (fox a_1) (grain a_1)) False)) Clause #94 (by clausification #[93]): âˆ€ (a a_1 : Iota), Or (Eq (wolf a) False) (Or (Eq (Or (fox a_1) (grain a_1)) False) (Eq (eats a a_1) False)) Clause #95 (by clausification #[94]): âˆ€ (a a_1 : Iota), Or (Eq (wolf a) False) (Or (Eq (eats a a_1) False) (Eq (grain a_1) False)) Clause #96 (by clausification #[94]): âˆ€ (a a_1 : Iota), Or (Eq (wolf a) False) (Or (Eq (eats a a_1) False) (Eq (fox a_1) False)) Clause #97 (by superposition #[95, 34]): âˆ€ (a a_1 : Iota), Or (Eq (eats (skS.0 0 a) a_1) False) (Or (Eq (grain a_1) False) (Eq False True)) Clause #98 (by clausification #[50]): âˆ€ (a : Iota), Eq (animal (skS.0 5 a)) True Clause #99 (by superposition #[98, 89]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq True False) (Or (Eq (plant a) False) (Or (Eq (eats (skS.0 5 a_1) a) True) (Or (Eq (eats (skS.0 5 a_1) a_2) True) (Or (Eq (animal a_2) False) (Or (Eq (much_smaller a_2 (skS.0 5 a_1)) False) (Or (Eq (plant a_3) False) (Eq (eats a_2 a_3) False))))))) Clause #100 (by superposition #[66, 46]): âˆ€ (a a_1 : Iota), Or (Eq (much_smaller a (skS.0 4 a_1)) True) (Or (Eq (snail a) False) (Eq False True)) Clause #101 (by clausification #[44]): âˆ€ (a : Iota), Eq (plant (skS.0 3 a)) True Clause #102 (by superposition #[96, 34]): âˆ€ (a a_1 : Iota), Or (Eq (eats (skS.0 0 a) a_1) False) (Or (Eq (fox a_1) False) (Eq False True)) Clause #103 (by clausification #[19]): âˆ€ (a : Iota), Eq (Or (caterpillar a) (snail a) â†’ Exists fun Y => And (plant Y) (eats a Y)) True Clause #104 (by clausification #[103]): âˆ€ (a : Iota), Or (Eq (Or (caterpillar a) (snail a)) False) (Eq (Exists fun Y => And (plant Y) (eats a Y)) True) Clause #105 (by clausification #[104]): âˆ€ (a : Iota), Or (Eq (Exists fun Y => And (plant Y) (eats a Y)) True) (Eq (snail a) False) Clause #107 (by clausification #[105]): âˆ€ (a a_1 : Iota), Or (Eq (snail a) False) (Eq (And (plant (skS.0 6 a a_1)) (eats a (skS.0 6 a a_1))) True) Clause #108 (by clausification #[107]): âˆ€ (a a_1 : Iota), Or (Eq (snail a) False) (Eq (eats a (skS.0 6 a a_1)) True) Clause #109 (by clausification #[107]): âˆ€ (a a_1 : Iota), Or (Eq (snail a) False) (Eq (plant (skS.0 6 a a_1)) True) Clause #110 (by superposition #[108, 40]): âˆ€ (a a_1 : Iota), Or (Eq (eats (skS.0 2 a) (skS.0 6 (skS.0 2 a) a_1)) True) (Eq False True) Clause #111 (by clausification #[47]): âˆ€ (a : Iota), Eq (animal (skS.0 4 a)) True Clause #112 (by superposition #[111, 89]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq True False) (Or (Eq (plant a) False) (Or (Eq (eats (skS.0 4 a_1) a) True) (Or (Eq (eats (skS.0 4 a_1) a_2) True) (Or (Eq (animal a_2) False) (Or (Eq (much_smaller a_2 (skS.0 4 a_1)) False) (Or (Eq (plant a_3) False) (Eq (eats a_2 a_3) False))))))) Clause #115 (by clausification #[35]): âˆ€ (a : Iota), Eq (animal (skS.0 0 a)) True Clause #116 (by superposition #[115, 89]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq True False) (Or (Eq (plant a) False) (Or (Eq (eats (skS.0 0 a_1) a) True) (Or (Eq (eats (skS.0 0 a_1) a_2) True) (Or (Eq (animal a_2) False) (Or (Eq (much_smaller a_2 (skS.0 0 a_1)) False) (Or (Eq (plant a_3) False) (Eq (eats a_2 a_3) False))))))) Clause #117 (by clausification #[41]): âˆ€ (a : Iota), Eq (animal (skS.0 2 a)) True Clause #119 (by superposition #[109, 40]): âˆ€ (a a_1 : Iota), Or (Eq (plant (skS.0 6 (skS.0 2 a) a_1)) True) (Eq False True) Clause #120 (by clausification #[20]): Eq (Exists fun X => Exists fun Y => And (And (animal X) (animal Y)) (Exists fun Z => And (And (grain Z) (eats Y Z)) (eats X Y))) False Clause #121 (by clausification #[120]): âˆ€ (a : Iota), Eq (Exists fun Y => And (And (animal a) (animal Y)) (Exists fun Z => And (And (grain Z) (eats Y Z)) (eats a Y))) False Clause #122 (by clausification #[121]): âˆ€ (a a_1 : Iota), Eq (And (And (animal a) (animal a_1)) (Exists fun Z => And (And (grain Z) (eats a_1 Z)) (eats a a_1))) False Clause #123 (by clausification #[122]): âˆ€ (a a_1 : Iota), Or (Eq (And (animal a) (animal a_1)) False) (Eq (Exists fun Z => And (And (grain Z) (eats a_1 Z)) (eats a a_1)) False) Clause #124 (by clausification #[123]): âˆ€ (a a_1 : Iota), Or (Eq (Exists fun Z => And (And (grain Z) (eats a Z)) (eats a_1 a)) False) (Or (Eq (animal a_1) False) (Eq (animal a) False)) Clause #125 (by clausification #[124]): âˆ€ (a a_1 a_2 : Iota), Or (Eq (animal a) False) (Or (Eq (animal a_1) False) (Eq (And (And (grain a_2) (eats a_1 a_2)) (eats a a_1)) False)) Clause #126 (by clausification #[125]): âˆ€ (a a_1 a_2 : Iota), Or (Eq (animal a) False) (Or (Eq (animal a_1) False) (Or (Eq (And (grain a_2) (eats a_1 a_2)) False) (Eq (eats a a_1) False))) Clause #127 (by clausification #[126]): âˆ€ (a a_1 a_2 : Iota), Or (Eq (animal a) False) (Or (Eq (animal a_1) False) (Or (Eq (eats a a_1) False) (Or (Eq (grain a_2) False) (Eq (eats a_1 a_2) False)))) Clause #128 (by superposition #[127, 98]): âˆ€ (a a_1 a_2 : Iota), Or (Eq (animal a) False) (Or (Eq (eats (skS.0 5 a_1) a) False) (Or (Eq (grain a_2) False) (Or (Eq (eats a a_2) False) (Eq False True)))) Clause #140 (by clausification #[100]): âˆ€ (a a_1 : Iota), Or (Eq (much_smaller a (skS.0 4 a_1)) True) (Eq (snail a) False) Clause #141 (by superposition #[140, 40]): âˆ€ (a a_1 : Iota), Or (Eq (much_smaller (skS.0 2 a) (skS.0 4 a_1)) True) (Eq False True) Clause #142 (by clausification #[55]): âˆ€ (a a_1 : Iota), Or (Eq (much_smaller (skS.0 5 a) a_1) True) (Eq (wolf a_1) False) Clause #143 (by superposition #[142, 34]): âˆ€ (a a_1 : Iota), Or (Eq (much_smaller (skS.0 5 a) (skS.0 0 a_1)) True) (Eq False True) Clause #144 (by clausification #[60]): âˆ€ (a a_1 : Iota), Or (Eq (much_smaller (skS.0 4 a) a_1) True) (Eq (fox a_1) False) Clause #145 (by superposition #[144, 49]): âˆ€ (a a_1 : Iota), Or (Eq (much_smaller (skS.0 4 a) (skS.0 5 a_1)) True) (Eq False True) Clause #146 (by clausification #[102]): âˆ€ (a a_1 : Iota), Or (Eq (eats (skS.0 0 a) a_1) False) (Eq (fox a_1) False) Clause #149 (by clausification #[97]): âˆ€ (a a_1 : Iota), Or (Eq (eats (skS.0 0 a) a_1) False) (Eq (grain a_1) False) Clause #150 (by clausification #[78]): âˆ€ (a a_1 : Iota), Or (Eq (snail a) False) (Eq (eats (skS.0 4 a_1) a) False) Clause #151 (by superposition #[150, 40]): âˆ€ (a a_1 : Iota), Or (Eq (eats (skS.0 4 a) (skS.0 2 a_1)) False) (Eq False True) Clause #152 (by clausification #[151]): âˆ€ (a a_1 : Iota), Eq (eats (skS.0 4 a) (skS.0 2 a_1)) False Clause #153 (by clausification #[99]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (plant a) False) (Or (Eq (eats (skS.0 5 a_1) a) True) (Or (Eq (eats (skS.0 5 a_1) a_2) True) (Or (Eq (animal a_2) False) (Or (Eq (much_smaller a_2 (skS.0 5 a_1)) False) (Or (Eq (plant a_3) False) (Eq (eats a_2 a_3) False)))))) Clause #154 (by superposition #[153, 101]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (eats (skS.0 5 a) (skS.0 3 a_1)) True) (Or (Eq (eats (skS.0 5 a) a_2) True) (Or (Eq (animal a_2) False) (Or (Eq (much_smaller a_2 (skS.0 5 a)) False) (Or (Eq (plant a_3) False) (Or (Eq (eats a_2 a_3) False) (Eq False True)))))) Clause #156 (by clausification #[141]): âˆ€ (a a_1 : Iota), Eq (much_smaller (skS.0 2 a) (skS.0 4 a_1)) True Clause #158 (by clausification #[143]): âˆ€ (a a_1 : Iota), Eq (much_smaller (skS.0 5 a) (skS.0 0 a_1)) True Clause #159 (by clausification #[145]): âˆ€ (a a_1 : Iota), Eq (much_smaller (skS.0 4 a) (skS.0 5 a_1)) True Clause #160 (by clausification #[110]): âˆ€ (a a_1 : Iota), Eq (eats (skS.0 2 a) (skS.0 6 (skS.0 2 a) a_1)) True Clause #161 (by clausification #[119]): âˆ€ (a a_1 : Iota), Eq (plant (skS.0 6 (skS.0 2 a) a_1)) True Clause #183 (by clausification #[112]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (plant a) False) (Or (Eq (eats (skS.0 4 a_1) a) True) (Or (Eq (eats (skS.0 4 a_1) a_2) True) (Or (Eq (animal a_2) False) (Or (Eq (much_smaller a_2 (skS.0 4 a_1)) False) (Or (Eq (plant a_3) False) (Eq (eats a_2 a_3) False)))))) Clause #184 (by superposition #[183, 101]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (eats (skS.0 4 a) (skS.0 3 a_1)) True) (Or (Eq (eats (skS.0 4 a) a_2) True) (Or (Eq (animal a_2) False) (Or (Eq (much_smaller a_2 (skS.0 4 a)) False) (Or (Eq (plant a_3) False) (Or (Eq (eats a_2 a_3) False) (Eq False True)))))) Clause #193 (by clausification #[128]): âˆ€ (a a_1 a_2 : Iota), Or (Eq (animal a) False) (Or (Eq (eats (skS.0 5 a_1) a) False) (Or (Eq (grain a_2) False) (Eq (eats a a_2) False))) Clause #195 (by superposition #[193, 111]): âˆ€ (a a_1 a_2 : Iota), Or (Eq (eats (skS.0 5 a) (skS.0 4 a_1)) False) (Or (Eq (grain a_2) False) (Or (Eq (eats (skS.0 4 a_1) a_2) False) (Eq False True))) Clause #208 (by clausification #[195]): âˆ€ (a a_1 a_2 : Iota), Or (Eq (eats (skS.0 5 a) (skS.0 4 a_1)) False) (Or (Eq (grain a_2) False) (Eq (eats (skS.0 4 a_1) a_2) False)) Clause #211 (by clausification #[116]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (plant a) False) (Or (Eq (eats (skS.0 0 a_1) a) True) (Or (Eq (eats (skS.0 0 a_1) a_2) True) (Or (Eq (animal a_2) False) (Or (Eq (much_smaller a_2 (skS.0 0 a_1)) False) (Or (Eq (plant a_3) False) (Eq (eats a_2 a_3) False)))))) Clause #212 (by superposition #[211, 101]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (eats (skS.0 0 a) (skS.0 3 a_1)) True) (Or (Eq (eats (skS.0 0 a) a_2) True) (Or (Eq (animal a_2) False) (Or (Eq (much_smaller a_2 (skS.0 0 a)) False) (Or (Eq (plant a_3) False) (Or (Eq (eats a_2 a_3) False) (Eq False True)))))) Clause #230 (by clausification #[154]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (eats (skS.0 5 a) (skS.0 3 a_1)) True) (Or (Eq (eats (skS.0 5 a) a_2) True) (Or (Eq (animal a_2) False) (Or (Eq (much_smaller a_2 (skS.0 5 a)) False) (Or (Eq (plant a_3) False) (Eq (eats a_2 a_3) False))))) Clause #232 (by superposition #[230, 111]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (eats (skS.0 5 a) (skS.0 3 a_1)) True) (Or (Eq (eats (skS.0 5 a) (skS.0 4 a_2)) True) (Or (Eq (much_smaller (skS.0 4 a_2) (skS.0 5 a)) False) (Or (Eq (plant a_3) False) (Or (Eq (eats (skS.0 4 a_2) a_3) False) (Eq False True))))) Clause #272 (by clausification #[184]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (eats (skS.0 4 a) (skS.0 3 a_1)) True) (Or (Eq (eats (skS.0 4 a) a_2) True) (Or (Eq (animal a_2) False) (Or (Eq (much_smaller a_2 (skS.0 4 a)) False) (Or (Eq (plant a_3) False) (Eq (eats a_2 a_3) False))))) Clause #277 (by superposition #[272, 117]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (eats (skS.0 4 a) (skS.0 3 a_1)) True) (Or (Eq (eats (skS.0 4 a) (skS.0 2 a_2)) True) (Or (Eq (much_smaller (skS.0 2 a_2) (skS.0 4 a)) False) (Or (Eq (plant a_3) False) (Or (Eq (eats (skS.0 2 a_2) a_3) False) (Eq False True))))) Clause #278 (by clausification #[212]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (eats (skS.0 0 a) (skS.0 3 a_1)) True) (Or (Eq (eats (skS.0 0 a) a_2) True) (Or (Eq (animal a_2) False) (Or (Eq (much_smaller a_2 (skS.0 0 a)) False) (Or (Eq (plant a_3) False) (Eq (eats a_2 a_3) False))))) Clause #279 (by superposition #[278, 98]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (eats (skS.0 0 a) (skS.0 3 a_1)) True) (Or (Eq (eats (skS.0 0 a) (skS.0 5 a_2)) True) (Or (Eq (much_smaller (skS.0 5 a_2) (skS.0 0 a)) False) (Or (Eq (plant a_3) False) (Or (Eq (eats (skS.0 5 a_2) a_3) False) (Eq False True))))) Clause #332 (by clausification #[279]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (eats (skS.0 0 a) (skS.0 3 a_1)) True) (Or (Eq (eats (skS.0 0 a) (skS.0 5 a_2)) True) (Or (Eq (much_smaller (skS.0 5 a_2) (skS.0 0 a)) False) (Or (Eq (plant a_3) False) (Eq (eats (skS.0 5 a_2) a_3) False)))) Clause #333 (by superposition #[332, 158]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (eats (skS.0 0 a) (skS.0 3 a_1)) True) (Or (Eq (eats (skS.0 0 a) (skS.0 5 a_2)) True) (Or (Eq (plant a_3) False) (Or (Eq (eats (skS.0 5 a_2) a_3) False) (Eq False True)))) Clause #334 (by clausification #[333]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (eats (skS.0 0 a) (skS.0 3 a_1)) True) (Or (Eq (eats (skS.0 0 a) (skS.0 5 a_2)) True) (Or (Eq (plant a_3) False) (Eq (eats (skS.0 5 a_2) a_3) False))) Clause #335 (by superposition #[334, 101]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (eats (skS.0 0 a) (skS.0 3 a_1)) True) (Or (Eq (eats (skS.0 0 a) (skS.0 5 a_2)) True) (Or (Eq (eats (skS.0 5 a_2) (skS.0 3 a_3)) False) (Eq False True))) Clause #338 (by clausification #[335]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (eats (skS.0 0 a) (skS.0 3 a_1)) True) (Or (Eq (eats (skS.0 0 a) (skS.0 5 a_2)) True) (Eq (eats (skS.0 5 a_2) (skS.0 3 a_3)) False)) Clause #347 (by clausification #[232]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (eats (skS.0 5 a) (skS.0 3 a_1)) True) (Or (Eq (eats (skS.0 5 a) (skS.0 4 a_2)) True) (Or (Eq (much_smaller (skS.0 4 a_2) (skS.0 5 a)) False) (Or (Eq (plant a_3) False) (Eq (eats (skS.0 4 a_2) a_3) False)))) Clause #348 (by superposition #[347, 159]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (eats (skS.0 5 a) (skS.0 3 a_1)) True) (Or (Eq (eats (skS.0 5 a) (skS.0 4 a_2)) True) (Or (Eq (plant a_3) False) (Or (Eq (eats (skS.0 4 a_2) a_3) False) (Eq False True)))) Clause #349 (by clausification #[348]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (eats (skS.0 5 a) (skS.0 3 a_1)) True) (Or (Eq (eats (skS.0 5 a) (skS.0 4 a_2)) True) (Or (Eq (plant a_3) False) (Eq (eats (skS.0 4 a_2) a_3) False))) Clause #350 (by superposition #[349, 101]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (eats (skS.0 5 a) (skS.0 3 a_1)) True) (Or (Eq (eats (skS.0 5 a) (skS.0 4 a_2)) True) (Or (Eq (eats (skS.0 4 a_2) (skS.0 3 a_3)) False) (Eq False True))) Clause #353 (by clausification #[350]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (eats (skS.0 5 a) (skS.0 3 a_1)) True) (Or (Eq (eats (skS.0 5 a) (skS.0 4 a_2)) True) (Eq (eats (skS.0 4 a_2) (skS.0 3 a_3)) False)) Clause #373 (by clausification #[277]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (eats (skS.0 4 a) (skS.0 3 a_1)) True) (Or (Eq (eats (skS.0 4 a) (skS.0 2 a_2)) True) (Or (Eq (much_smaller (skS.0 2 a_2) (skS.0 4 a)) False) (Or (Eq (plant a_3) False) (Eq (eats (skS.0 2 a_2) a_3) False)))) Clause #374 (by forward demodulation #[373, 152]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (eats (skS.0 4 a) (skS.0 3 a_1)) True) (Or (Eq False True) (Or (Eq (much_smaller (skS.0 2 a_2) (skS.0 4 a)) False) (Or (Eq (plant a_3) False) (Eq (eats (skS.0 2 a_2) a_3) False)))) Clause #375 (by clausification #[374]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (eats (skS.0 4 a) (skS.0 3 a_1)) True) (Or (Eq (much_smaller (skS.0 2 a_2) (skS.0 4 a)) False) (Or (Eq (plant a_3) False) (Eq (eats (skS.0 2 a_2) a_3) False))) Clause #376 (by superposition #[375, 156]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (eats (skS.0 4 a) (skS.0 3 a_1)) True) (Or (Eq (plant a_2) False) (Or (Eq (eats (skS.0 2 a_3) a_2) False) (Eq False True))) Clause #377 (by clausification #[376]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (eats (skS.0 4 a) (skS.0 3 a_1)) True) (Or (Eq (plant a_2) False) (Eq (eats (skS.0 2 a_3) a_2) False)) Clause #379 (by superposition #[377, 161]): âˆ€ (a a_1 a_2 a_3 a_4 : Iota), Or (Eq (eats (skS.0 4 a) (skS.0 3 a_1)) True) (Or (Eq (eats (skS.0 2 a_2) (skS.0 6 (skS.0 2 a_3) a_4)) False) (Eq False True)) Clause #385 (by clausification #[379]): âˆ€ (a a_1 a_2 a_3 a_4 : Iota), Or (Eq (eats (skS.0 4 a) (skS.0 3 a_1)) True) (Eq (eats (skS.0 2 a_2) (skS.0 6 (skS.0 2 a_3) a_4)) False) Clause #386 (by superposition #[385, 160]): âˆ€ (a a_1 : Iota), Or (Eq (eats (skS.0 4 a) (skS.0 3 a_1)) True) (Eq False True) Clause #387 (by clausification #[386]): âˆ€ (a a_1 : Iota), Eq (eats (skS.0 4 a) (skS.0 3 a_1)) True Clause #388 (by superposition #[387, 353]): âˆ€ (a a_1 a_2 : Iota), Or (Eq (eats (skS.0 5 a) (skS.0 3 a_1)) True) (Or (Eq (eats (skS.0 5 a) (skS.0 4 a_2)) True) (Eq True False)) Clause #389 (by clausification #[388]): âˆ€ (a a_1 a_2 : Iota), Or (Eq (eats (skS.0 5 a) (skS.0 3 a_1)) True) (Eq (eats (skS.0 5 a) (skS.0 4 a_2)) True) Clause #391 (by superposition #[389, 208]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (eats (skS.0 5 a) (skS.0 3 a_1)) True) (Or (Eq True False) (Or (Eq (grain a_2) False) (Eq (eats (skS.0 4 a_3) a_2) False))) Clause #392 (by clausification #[391]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (eats (skS.0 5 a) (skS.0 3 a_1)) True) (Or (Eq (grain a_2) False) (Eq (eats (skS.0 4 a_3) a_2) False)) Clause #393 (by superposition #[392, 43]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (eats (skS.0 5 a) (skS.0 3 a_1)) True) (Or (Eq (eats (skS.0 4 a_2) (skS.0 3 a_3)) False) (Eq False True)) Clause #395 (by clausification #[393]): âˆ€ (a a_1 a_2 a_3 : Iota), Or (Eq (eats (skS.0 5 a) (skS.0 3 a_1)) True) (Eq (eats (skS.0 4 a_2) (skS.0 3 a_3)) False) Clause #396 (by superposition #[395, 387]): âˆ€ (a a_1 : Iota), Or (Eq (eats (skS.0 5 a) (skS.0 3 a_1)) True) (Eq False True) Clause #397 (by clausification #[396]): âˆ€ (a a_1 : Iota), Eq (eats (skS.0 5 a) (skS.0 3 a_1)) True Clause #398 (by superposition #[397, 338]): âˆ€ (a a_1 a_2 : Iota), Or (Eq (eats (skS.0 0 a) (skS.0 3 a_1)) True) (Or (Eq (eats (skS.0 0 a) (skS.0 5 a_2)) True) (Eq True False)) Clause #399 (by clausification #[398]): âˆ€ (a a_1 a_2 : Iota), Or (Eq (eats (skS.0 0 a) (skS.0 3 a_1)) True) (Eq (eats (skS.0 0 a) (skS.0 5 a_2)) True) Clause #403 (by superposition #[399, 146]): âˆ€ (a a_1 a_2 : Iota), Or (Eq (eats (skS.0 0 a) (skS.0 3 a_1)) True) (Or (Eq True False) (Eq (fox (skS.0 5 a_2)) False)) Clause #406 (by clausification #[403]): âˆ€ (a a_1 a_2 : Iota), Or (Eq (eats (skS.0 0 a) (skS.0 3 a_1)) True) (Eq (fox (skS.0 5 a_2)) False) Clause #407 (by superposition #[406, 49]): âˆ€ (a a_1 : Iota), Or (Eq (eats (skS.0 0 a) (skS.0 3 a_1)) True) (Eq False True) Clause #409 (by clausification #[407]): âˆ€ (a a_1 : Iota), Eq (eats (skS.0 0 a) (skS.0 3 a_1)) True Clause #411 (by superposition #[409, 149]): âˆ€ (a : Iota), Or (Eq True False) (Eq (grain (skS.0 3 a)) False) Clause #412 (by clausification #[411]): âˆ€ (a : Iota), Eq (grain (skS.0 3 a)) False Clause #413 (by superposition #[412, 43]): Eq False True Clause #414 (by clausification #[413]): False SZS output end Proof for theBenchmark.p ### Sample solution for BOO001-1 SZS status Theorem for BOO001-1 SZS output start Proof for BOO001-1 Clause #1 (by assumption []): (inverse (inverse a) â‰ a) = True Clause #2 (by assumption []): (âˆ€ (Y X : TPTP.iota), multiply X Y (inverse Y) = X) = True Clause #4 (by assumption []): (âˆ€ (Y X : TPTP.iota), multiply X X Y = X) = True Clause #5 (by assumption []): (âˆ€ (X Y : TPTP.iota), multiply Y X X = X) = True Clause #6 (by assumption []): (âˆ€ (Z W V Y X : TPTP.iota), multiply (multiply V W X) Y (multiply V W Z) = multiply V W (multiply X Y Z)) = True Clause #8 (by clausification [1]): inverse (inverse a) â‰ a Clause #9 (by clausification [5]): âˆ€ (a : TPTP.iota), (âˆ€ (Y : TPTP.iota), multiply Y a a = a) = True Clause #10 (by clausification [9]): âˆ€ (a a_1 : TPTP.iota), (multiply a a_1 a_1 = a_1) = True Clause #11 (by clausification [10]): âˆ€ (a a_1 : TPTP.iota), multiply a a_1 a_1 = a_1 Clause #12 (by clausification [4]): âˆ€ (a : TPTP.iota), (âˆ€ (X : TPTP.iota), multiply X X a = X) = True Clause #13 (by clausification [12]): âˆ€ (a a_1 : TPTP.iota), (multiply a a a_1 = a) = True Clause #14 (by clausification [13]): âˆ€ (a a_1 : TPTP.iota), multiply a a a_1 = a Clause #18 (by clausification [2]): âˆ€ (a : TPTP.iota), (âˆ€ (X : TPTP.iota), multiply X a (inverse a) = X) = True Clause #19 (by clausification [18]): âˆ€ (a a_1 : TPTP.iota), (multiply a a_1 (inverse a_1) = a) = True Clause #20 (by clausification [19]): âˆ€ (a a_1 : TPTP.iota), multiply a a_1 (inverse a_1) = a Clause #21 (by clausification [6]): âˆ€ (a : TPTP.iota), (âˆ€ (W V Y X : TPTP.iota), multiply (multiply V W X) Y (multiply V W a) = multiply V W (multiply X Y a)) = True Clause #22 (by clausification [21]): âˆ€ (a a_1 : TPTP.iota), (âˆ€ (V Y X : TPTP.iota), multiply (multiply V a X) Y (multiply V a a_1) = multiply V a (multiply X Y a_1)) = True Clause #23 (by clausification [22]): âˆ€ (a a_1 a_2 : TPTP.iota), (âˆ€ (Y X : TPTP.iota), multiply (multiply a a_1 X) Y (multiply a a_1 a_2) = multiply a a_1 (multiply X Y a_2)) = True Clause #24 (by clausification [23]): âˆ€ (a a_1 a_2 a_3 : TPTP.iota), (âˆ€ (X : TPTP.iota), multiply (multiply a a_1 X) a_2 (multiply a a_1 a_3) = multiply a a_1 (multiply X a_2 a_3)) = True Clause #25 (by clausification [24]): âˆ€ (a a_1 a_2 a_3 a_4 : TPTP.iota), (multiply (multiply a a_1 a_2) a_3 (multiply a a_1 a_4) = multiply a a_1 (multiply a_2 a_3 a_4)) = True Clause #26 (by clausification [25]): âˆ€ (a a_1 a_2 a_3 a_4 : TPTP.iota), multiply (multiply a a_1 a_2) a_3 (multiply a a_1 a_4) = multiply a a_1 (multiply a_2 a_3 a_4) Clause #28 (by superposition [26, 14]): âˆ€ (a a_1 a_2 a_3 : TPTP.iota), multiply a a_1 (multiply a_2 (multiply a a_1 a_2) a_3) = multiply a a_1 a_2 Clause #36 (by superposition [26, 11]): âˆ€ (a a_1 a_2 a_3 : TPTP.iota), multiply a a_1 (multiply a_2 a a_3) = multiply a_2 a (multiply a a_1 a_3) Clause #76 (by superposition [28, 20]): âˆ€ (a a_1 a_2 : TPTP.iota), multiply a a_1 (multiply (inverse a_1) a a_2) = a Clause #602 (by superposition [36, 76]): âˆ€ (a a_1 a_2 : TPTP.iota), a = multiply (inverse a_1) a (multiply a a_1 a_2) Clause #675 (by superposition [602, 11]): âˆ€ (a a_1 : TPTP.iota), a = multiply (inverse a_1) a a_1 Clause #681 (by superposition [675, 20]): âˆ€ (a : TPTP.iota), a = inverse (inverse a) Clause #701 (by backward contextual literal cutting [681, 8]): False SZS output end Proof for BOO001-1 ## E 3.0 Stephan Schulz DHBW Stuttgart, Germany ### Sample solution for SET014^4 # SZS output start CNFRefutation thf(thm, conjecture, ![X22:$i > $o, X23:$i > $o, X24:$i > $o]:(((subset @ X22 @ X24)&(subset @ X23 @ X24))=>(subset @ (union @ X22 @ X23) @ X24)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SET014^4.p', thm)). thf(union, axiom, ((union)=(^[X5:$i > $o, X6:$i > $o, X4:$i]:(((X5 @ X4)|(X6 @ X4))))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/SET008^0.ax', union)).
thf(subset, axiom, ((subset)=(^[X16:$i >$o, X17:$i >$o]:(![X4:$i]:(((X16 @ X4)=>(X17 @ X4)))))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/SET008^0.ax', subset)). thf(c_0_3, negated_conjecture, ~(![X22:$i > $o, X23:$i > $o, X24:$i > $o]:((![X29:$i]:((X22 @ X29)=>(X24 @ X29))&![X30:$i]:((X23 @ X30)=>(X24 @ X30)))=>![X32:$i]:(((X22 @ X32)|(X23 @ X32))=>(X24 @ X32)))), inference(apply_def,[status(thm)],[inference(apply_def,[status(thm)],[inference(assume_negation,[status(cth)],[thm]), union]), subset])).
thf(c_0_4, negated_conjecture, ![X37:$i, X38:$i]:(((~(epred1_0 @ X37)|(epred3_0 @ X37))&(~(epred2_0 @ X38)|(epred3_0 @ X38)))&(((epred1_0 @ esk1_0)|(epred2_0 @ esk1_0))&~(epred3_0 @ esk1_0))), inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_3])])])])).
thf(c_0_5, negated_conjecture, ![X1:$i]:((epred3_0 @ X1)|~(epred2_0 @ X1)), inference(split_conjunct,[status(thm)],[c_0_4])). thf(c_0_6, negated_conjecture, ((epred1_0 @ esk1_0)|(epred2_0 @ esk1_0)), inference(split_conjunct,[status(thm)],[c_0_4])). thf(c_0_7, negated_conjecture, ~(epred3_0 @ esk1_0), inference(split_conjunct,[status(thm)],[c_0_4])). thf(c_0_8, negated_conjecture, ![X1:$i]:((epred3_0 @ X1)|~(epred1_0 @ X1)), inference(split_conjunct,[status(thm)],[c_0_4])).
thf(c_0_9, negated_conjecture, (epred1_0 @ esk1_0), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_5, c_0_6]), c_0_7])).
thf(c_0_10, negated_conjecture, ($false), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_8, c_0_9]), c_0_7]), ['proof']). # SZS output end CNFRefutation ## E 3.1 Stephan Schulz DHBW Stuttgart, Germany ### Sample solution for SET014^4 # SZS output start CNFRefutation thf(thm, conjecture, ![X22:$i > $o, X23:$i > $o, X24:$i > $o]:(((subset @ X22 @ X24)&(subset @ X23 @ X24))=>(subset @ (union @ X22 @ X23) @ X24)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SET014^4.p', thm)). thf(union, axiom, ((union)=(^[X5:$i > $o, X6:$i > $o, X4:$i]:(((X5 @ X4)|(X6 @ X4))))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/SET008^0.ax', union)).
thf(subset, axiom, ((subset)=(^[X16:$i >$o, X17:$i >$o]:(![X4:$i]:(((X16 @ X4)=>(X17 @ X4)))))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/SET008^0.ax', subset)). thf(c_0_3, negated_conjecture, ~(![X22:$i > $o, X23:$i > $o, X24:$i > $o]:((![X29:$i]:((X22 @ X29)=>(X24 @ X29))&![X30:$i]:((X23 @ X30)=>(X24 @ X30)))=>![X32:$i]:(((X22 @ X32)|(X23 @ X32))=>(X24 @ X32)))), inference(apply_def,[status(thm)],[inference(apply_def,[status(thm)],[inference(assume_negation,[status(cth)],[thm]), union]), subset])).
thf(c_0_4, negated_conjecture, ![X37:$i, X38:$i]:(((~(epred1_0 @ X37)|(epred3_0 @ X37))&(~(epred2_0 @ X38)|(epred3_0 @ X38)))&(((epred1_0 @ esk1_0)|(epred2_0 @ esk1_0))&~(epred3_0 @ esk1_0))), inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_3])])])])).
thf(c_0_5, negated_conjecture, ![X1:$i]:((epred3_0 @ X1)|~(epred2_0 @ X1)), inference(split_conjunct,[status(thm)],[c_0_4])). thf(c_0_6, negated_conjecture, ((epred1_0 @ esk1_0)|(epred2_0 @ esk1_0)), inference(split_conjunct,[status(thm)],[c_0_4])). thf(c_0_7, negated_conjecture, ~(epred3_0 @ esk1_0), inference(split_conjunct,[status(thm)],[c_0_4])). thf(c_0_8, negated_conjecture, ![X1:$i]:((epred3_0 @ X1)|~(epred1_0 @ X1)), inference(split_conjunct,[status(thm)],[c_0_4])).
thf(c_0_9, negated_conjecture, (epred1_0 @ esk1_0), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_5, c_0_6]), c_0_7])).
thf(c_0_10, negated_conjecture, ($false), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_8, c_0_9]), c_0_7]), ['proof']). # SZS output end CNFRefutation ### Sample solution for COM001_10 # SZS output start Saturation tff(decl_22, type, p3: state). tff(decl_23, type, p4: state). tff(decl_24, type, p5: state). tff(decl_25, type, p8: state). tff(decl_26, type, n: number). tff(decl_27, type, register_j: register). tff(decl_28, type, out: label). tff(decl_29, type, loop: label). tff(decl_30, type, equal_function: (register * number) > boolean). tff(decl_31, type, goto: label > statement). tff(decl_32, type, ifthen: (boolean * state) > statement). tff(decl_33, type, follows: (state * state) >$o).
tff(decl_34, type, succeeds: (state * state) > $o). tff(decl_35, type, labels: (label * state) >$o).
tff(decl_36, type, has: (state * statement) > $o). tff(goto_success, axiom, ![X2:state, X4:label, X1:state]:(((has(X1,goto(X4))&labels(X4,X2))=>succeeds(X2,X1))), file('/Users/schulz/EPROVER/OTHER_PROBLEMS/COM001_10.p', goto_success)). tff(state_8, hypothesis, has(p8,goto(loop)), file('/Users/schulz/EPROVER/OTHER_PROBLEMS/COM001_10.p', state_8)). tff(transitivity_of_success, axiom, ![X1:state, X3:state, X2:state]:(((succeeds(X2,X3)&succeeds(X3,X1))=>succeeds(X2,X1))), file('/Users/schulz/EPROVER/OTHER_PROBLEMS/COM001_10.p', transitivity_of_success)). tff(label_state_3, hypothesis, labels(loop,p3), file('/Users/schulz/EPROVER/OTHER_PROBLEMS/COM001_10.p', label_state_3)). tff(conditional_success, axiom, ![X2:state, X5:boolean, X1:state]:((has(X1,ifthen(X5,X2))=>succeeds(X2,X1))), file('/Users/schulz/EPROVER/OTHER_PROBLEMS/COM001_10.p', conditional_success)). tff(state_3, hypothesis, has(p3,ifthen(equal_function(register_j,n),p4)), file('/Users/schulz/EPROVER/OTHER_PROBLEMS/COM001_10.p', state_3)). tff(direct_success, axiom, ![X1:state, X2:state]:((follows(X2,X1)=>succeeds(X2,X1))), file('/Users/schulz/EPROVER/OTHER_PROBLEMS/COM001_10.p', direct_success)). tff(transition_3_to_8, hypothesis, follows(p8,p3), file('/Users/schulz/EPROVER/OTHER_PROBLEMS/COM001_10.p', transition_3_to_8)). tff(transition_4_to_5, hypothesis, follows(p5,p4), file('/Users/schulz/EPROVER/OTHER_PROBLEMS/COM001_10.p', transition_4_to_5)). tff(state_4, hypothesis, has(p4,goto(out)), file('/Users/schulz/EPROVER/OTHER_PROBLEMS/COM001_10.p', state_4)). tff(c_0_10, plain, ![X11:state, X12:label, X13:state]:((~has(X13,goto(X12))|~labels(X12,X11)|succeeds(X11,X13))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[goto_s uccess])])). tcf(c_0_11, plain, ![X1:state, X4:label, X2:state]:((succeeds(X2,X1)|~has(X1,goto(X4))|~labels(X4,X2))), inference(split_conjunct,[status(thm)],[c_0_10]), ['final']). tcf(c_0_12, hypothesis, has(p8,goto(loop)), inference(split_conjunct,[status(thm)],[state_8]), ['final']). tff(c_0_13, plain, ![X8:state, X9:state, X10:state]:((~succeeds(X10,X9)|~succeeds(X9,X8)|succeeds(X10,X8))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[transi tivity_of_success])])). tcf(c_0_14, hypothesis, ![X1:state]:((succeeds(X1,p8)|~labels(loop,X1))), inference(spm,[status(thm)],[c_0_11, c_0_12]), ['final']). tcf(c_0_15, hypothesis, labels(loop,p3), inference(split_conjunct,[status(thm)],[label_state_3]), ['final']). tff(c_0_16, plain, ![X14:state, X15:boolean, X16:state]:((~has(X16,ifthen(X15,X14))|succeeds(X14,X16))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[condit ional_success])])). tcf(c_0_17, plain, ![X1:state, X2:state, X3:state]:((succeeds(X1,X3)|~succeeds(X1,X2)|~succeeds(X2,X3))), inference(split_conjunct,[status(thm)],[c_0_13]), ['final']). tcf(c_0_18, hypothesis, succeeds(p3,p8), inference(spm,[status(thm)],[c_0_14, c_0_15]), ['final']). tcf(c_0_19, plain, ![X1:state, X5:boolean, X2:state]:((succeeds(X2,X1)|~has(X1,ifthen(X5,X2)))), inference(split_conjunct,[status(thm)],[c_0_16]), ['final']). tcf(c_0_20, hypothesis, has(p3,ifthen(equal_function(register_j,n),p4)), inference(split_conjunct,[status(thm)],[state_3]), ['final']). tff(c_0_21, plain, ![X6:state, X7:state]:((~follows(X7,X6)|succeeds(X7,X6))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[direct _success])])). tcf(c_0_22, hypothesis, ![X1:state]:((succeeds(X1,p8)|~succeeds(X1,p3))), inference(spm,[status(thm)],[c_0_17, c_0_18]), ['final']). tcf(c_0_23, hypothesis, succeeds(p4,p3), inference(spm,[status(thm)],[c_0_19, c_0_20]), ['final']). tcf(c_0_24, plain, ![X1:state, X2:state]:((succeeds(X1,X2)|~follows(X1,X2))), inference(split_conjunct,[status(thm)],[c_0_21]), ['final']). tcf(c_0_25, hypothesis, follows(p8,p3), inference(split_conjunct,[status(thm)],[transition_3_to_8]), ['final']). tcf(c_0_26, hypothesis, ![X1:state, X2:state]:((succeeds(X1,p8)|~succeeds(X2,p3)|~succeeds(X1,X2))), inference(spm,[status(thm)],[c_0_17, c_0_22]), ['final']). tcf(c_0_27, hypothesis, ![X1:state]:((succeeds(X1,p3)|~succeeds(X1,p4))), inference(spm,[status(thm)],[c_0_17, c_0_23]), ['final']). tcf(c_0_28, hypothesis, follows(p5,p4), inference(split_conjunct,[status(thm)],[transition_4_to_5]), ['final']). tcf(c_0_29, hypothesis, succeeds(p8,p3), inference(spm,[status(thm)],[c_0_24, c_0_25]), ['final']). tcf(c_0_30, hypothesis, ![X1:state, X2:state]:((succeeds(X1,p8)|~succeeds(X2,p4)|~succeeds(X1,X2))), inference(spm,[status(thm)],[c_0_26, c_0_27]), ['final']). tcf(c_0_31, hypothesis, succeeds(p5,p4), inference(spm,[status(thm)],[c_0_24, c_0_28]), ['final']). tcf(c_0_32, hypothesis, ![X1:state, X2:state]:((succeeds(X1,p3)|~succeeds(X2,p4)|~succeeds(X1,X2))), inference(spm,[status(thm)],[c_0_17, c_0_27]), ['final']). tcf(c_0_33, hypothesis, has(p4,goto(out)), inference(split_conjunct,[status(thm)],[state_4]), ['final']). tcf(c_0_34, hypothesis, ![X1:state]:((succeeds(X1,p3)|~succeeds(X1,p8))), inference(spm,[status(thm)],[c_0_17, c_0_29]), ['final']). tcf(c_0_35, hypothesis, ![X1:state]:((succeeds(X1,p8)|~succeeds(X1,p5))), inference(spm,[status(thm)],[c_0_30, c_0_31]), ['final']). tcf(c_0_36, hypothesis, ![X1:state]:((succeeds(X1,p8)|~succeeds(X1,p4))), inference(spm,[status(thm)],[c_0_26, c_0_23]), ['final']). tcf(c_0_37, hypothesis, ![X1:state]:((succeeds(X1,p3)|~succeeds(X1,p5))), inference(spm,[status(thm)],[c_0_32, c_0_31]), ['final']). tcf(c_0_38, hypothesis, ![X1:state]:((succeeds(X1,p4)|~labels(out,X1))), inference(spm,[status(thm)],[c_0_11, c_0_33]), ['final']). tcf(c_0_39, hypothesis, ![X1:state]:((succeeds(X1,p4)|~succeeds(X1,p5))), inference(spm,[status(thm)],[c_0_17, c_0_31]), ['final']). tcf(c_0_40, hypothesis, succeeds(p3,p3), inference(spm,[status(thm)],[c_0_34, c_0_18]), ['final']). # SZS output end Saturation ### Sample solution for DAT335_2 # SZS output start Saturation tff(decl_22, type, '$ki_local_world': '$ki_world'). tff(decl_23, type, '$ki_accessible': ('$ki_world' * '$ki_world') > $o). tff(decl_24, type, cs:$i).
tff(decl_25, type, sue: $i). tff(decl_26, type, mary:$i).
tff(decl_27, type, john: $i). tff(decl_28, type, math:$i).
tff(decl_29, type, psych: $i). tff(decl_30, type, teach: ('$ki_world' * $i *$i) > $o). tff(decl_31, type, '$ki_exists_in_world_$i': ('$ki_world' * $i) >$o).
tff(decl_33, type, esk2_1: '$ki_world' >$i).
tff(verify, conjecture,
?[X2]:((('$ki_exists_in_world_$i'('$ki_local_world',X2)&teach('$ki_local_world',
X2,psych))&~(![X1:'$ki_world']:(('$ki_accessible'('$ki_local_world',X1)=>teach(X 1,X2,cs)))))), file('/Users/schulz/EPROVER/OTHER_PROBLEMS/DAT335_2.p', verify)). tff('$ki_exists_in_world_$i_const', axiom, ![X1:'$ki_world',
X2]:('$ki_exists_in_world_$i'(X1,X2)),
file('/Users/schulz/EPROVER/OTHER_PROBLEMS/DAT335_2.p',
'$ki_exists_in_world_$i_const')).
tff(db, axiom,
![X1:'$ki_world']:(('$ki_accessible'('$ki_local_world',X1)=>(((teach(X1,john,mat h)&?[X2]:(('$ki_exists_in_world_$i'(X1,X2)&teach(X1,X2,cs))))&teach(X1,mary,psyc h))&teach(X1,sue,psych)))), file('/Users/schulz/EPROVER/OTHER_PROBLEMS/DAT335_2.p', db)). tff(mrel_reflexive, axiom, ![X1:'$ki_world']:('$ki_accessible'(X1,X1)), file('/Users/schulz/EPROVER/OTHER_PROBLEMS/DAT335_2.p', mrel_reflexive)). tff(c_0_4, negated_conjecture, ~(?[X2]:((('$ki_exists_in_world_$i'('$ki_local_world',X2)&teach('$ki_local_world ',X2,psych))&~(![X1:'$ki_world']:(('$ki_accessible'('$ki_local_world',X1)=>teach
(X1,X2,cs))))))), inference(assume_negation,[status(cth)],[verify])).
tff(c_0_5, negated_conjecture, ![X10,
X11:'$ki_world']:((~'$ki_exists_in_world_$i'('$ki_local_world',X10)|~teach('$ki_ local_world',X10,psych)|(~'$ki_accessible'('$ki_local_world',X11)|teach(X11,X10, cs)))), inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)], [inference(fof_nnf,[status(thm)],[c_0_4])])])). tff(c_0_6, plain, ![X4:'$ki_world', X5]:('$ki_exists_in_world_$i'(X4,X5)),
inference(variable_rename,[status(thm)],['$ki_exists_in_world_$i_const'])).
tcf(c_0_7, negated_conjecture, ![X2,
X1:'$ki_world']:((teach(X1,X2,cs)|~'$ki_exists_in_world_$i'('$ki_local_world',X2
)|~teach('$ki_local_world',X2,psych)|~'$ki_accessible'('$ki_local_world',X1))), inference(split_conjunct,[status(thm)],[c_0_5])). tcf(c_0_8, plain, ![X1:'$ki_world', X2]:('$ki_exists_in_world_$i'(X1,X2)),
inference(split_conjunct,[status(thm)],[c_0_6])).
tff(c_0_9, plain,
![X8:'$ki_world']:(((((teach(X8,john,math)|~'$ki_accessible'('$ki_local_world',X 8))&(('$ki_exists_in_world_$i'(X8,esk2_1(X8))|~'$ki_accessible'('$ki_local_world ',X8))&(teach(X8,esk2_1(X8),cs)|~'$ki_accessible'('$ki_local_world',X8))))&(teac h(X8,mary,psych)|~'$ki_accessible'('$ki_local_world',X8)))&(teach(X8,sue,psych)| ~'$ki_accessible'('$ki_local_world',X8)))), inference(distribute,[status(thm)],[inference(skolemize,[status(esa)],[inference (variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[db])])])])). tff(c_0_10, plain, ![X3:'$ki_world']:('$ki_accessible'(X3,X3)), inference(variable_rename,[status(thm)],[mrel_reflexive])). tcf(c_0_11, negated_conjecture, ![X1:'$ki_world',
X2]:((teach(X1,X2,cs)|~'$ki_accessible'('$ki_local_world',X1)|~teach('$ki_local_ world',X2,psych))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_7, c_0_8])]), ['final']). tcf(c_0_12, plain, ![X1:'$ki_world']:((teach(X1,sue,psych)|~'$ki_accessible'('$ki_local_world',X1))
), inference(split_conjunct,[status(thm)],[c_0_9]), ['final']).
tcf(c_0_13, plain, ![X1:'$ki_world']:('$ki_accessible'(X1,X1)),
inference(split_conjunct,[status(thm)],[c_0_10]), ['final']).
tcf(c_0_14, plain,
![X1:'$ki_world']:((teach(X1,mary,psych)|~'$ki_accessible'('$ki_local_world',X1) )), inference(split_conjunct,[status(thm)],[c_0_9]), ['final']). tcf(c_0_15, negated_conjecture, ![X1:'$ki_world']:((teach(X1,sue,cs)|~'$ki_accessible'('$ki_local_world',X1))),
inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(th
m)],[c_0_11, c_0_12]), c_0_13])]), ['final']).
tcf(c_0_16, negated_conjecture,
![X1:'$ki_world']:((teach(X1,mary,cs)|~'$ki_accessible'('$ki_local_world',X1))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(th m)],[c_0_11, c_0_14]), c_0_13])]), ['final']). tcf(c_0_17, plain, ![X1:'$ki_world']:((teach(X1,esk2_1(X1),cs)|~'$ki_accessible'('$ki_local_world',
X1))), inference(split_conjunct,[status(thm)],[c_0_9]), ['final']).
tcf(c_0_18, plain,
![X1:'$ki_world']:((teach(X1,john,math)|~'$ki_accessible'('$ki_local_world',X1)) ), inference(split_conjunct,[status(thm)],[c_0_9]), ['final']). # SZS output end Saturation ### Sample solution for SEU140+2 # SZS output start CNFRefutation fof(t4_xboole_0, lemma, ![X1, X2]:(~((~(disjoint(X1,X2))&![X3]:~(in(X3,set_intersection2(X1,X2)))))&~((?[X3]:in(X3,set_intersection2(X1,X2))&disjoint(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t4_xboole_0)). fof(t48_xboole_1, lemma, ![X1, X2]:set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t48_xboole_1)). fof(t63_xboole_1, conjecture, ![X1, X2, X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t63_xboole_1)). fof(d1_xboole_0, axiom, ![X1]:(X1=empty_set<=>![X2]:~(in(X2,X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', d1_xboole_0)). fof(d4_xboole_0, axiom, ![X1, X2, X3]:(X3=set_difference(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&~(in(X4,X2))))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', d4_xboole_0)). fof(t3_xboole_0, lemma, ![X1, X2]:(~((~(disjoint(X1,X2))&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t3_xboole_0)). fof(d3_xboole_0, axiom, ![X1, X2, X3]:(X3=set_intersection2(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&in(X4,X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', d3_xboole_0)). fof(l32_xboole_1, lemma, ![X1, X2]:(set_difference(X1,X2)=empty_set<=>subset(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', l32_xboole_1)). fof(d10_xboole_0, axiom, ![X1, X2]:(X1=X2<=>(subset(X1,X2)&subset(X2,X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', d10_xboole_0)). fof(t36_xboole_1, lemma, ![X1, X2]:subset(set_difference(X1,X2),X1), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t36_xboole_1)). fof(t3_boole, axiom, ![X1]:set_difference(X1,empty_set)=X1, file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t3_boole)). fof(c_0_11, lemma, ![X1, X2]:(~((~disjoint(X1,X2)&![X3]:~in(X3,set_intersection2(X1,X2))))&~((?[X3]:in(X3,set_intersection2(X1,X2))&disjoint(X1,X2)))), inference(fof_simplification,[status(thm)],[t4_xboole_0])). fof(c_0_12, lemma, ![X226, X227, X229, X230, X231]:((disjoint(X226,X227)|in(esk10_2(X226,X227),set_intersection2(X226,X227)))&(~in(X231,set_intersection2(X229,X230))|~disjoint(X229,X230))), inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_11])])])])])). fof(c_0_13, lemma, ![X223, X224]:set_difference(X223,set_difference(X223,X224))=set_intersection2(X223,X224), inference(variable_rename,[status(thm)],[t48_xboole_1])). fof(c_0_14, negated_conjecture, ~(![X1, X2, X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3))), inference(assume_negation,[status(cth)],[t63_xboole_1])). cnf(c_0_15, lemma, (~in(X1,set_intersection2(X2,X3))|~disjoint(X2,X3)), inference(split_conjunct,[status(thm)],[c_0_12])). cnf(c_0_16, lemma, (set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_13])). fof(c_0_17, negated_conjecture, ((subset(esk11_0,esk12_0)&disjoint(esk12_0,esk13_0))&~disjoint(esk11_0,esk13_0)), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_14])])])). fof(c_0_18, plain, ![X1]:(X1=empty_set<=>![X2]:~in(X2,X1)), inference(fof_simplification,[status(thm)],[d1_xboole_0])). fof(c_0_19, plain, ![X1, X2, X3]:(X3=set_difference(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&~in(X4,X2)))), inference(fof_simplification,[status(thm)],[d4_xboole_0])). fof(c_0_20, lemma, ![X1, X2]:(~((~disjoint(X1,X2)&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2)))), inference(fof_simplification,[status(thm)],[t3_xboole_0])). cnf(c_0_21, lemma, (~disjoint(X2,X3)|~in(X1,set_difference(X2,set_difference(X2,X3)))), inference(rw,[status(thm)],[c_0_15, c_0_16])). cnf(c_0_22, negated_conjecture, (disjoint(esk12_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_17])). fof(c_0_23, plain, ![X126, X127, X128]:((X126!=empty_set|~in(X127,X126))&(in(esk1_1(X128),X128)|X128=empty_set)), inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_18])])])])])). fof(c_0_24, plain, ![X145, X146, X147, X148, X149, X150, X151, X152]:((((in(X148,X145)|~in(X148,X147)|X147!=set_intersection2(X145,X146))&(in(X148,X146)|~in(X148,X147)|X147!=set_intersection2(X145,X146)))&(~in(X149,X145)|~in(X149,X146)|in(X149,X147)|X147!=set_intersection2(X145,X146)))&((~in(esk4_3(X150,X151,X152),X152)|(~in(esk4_3(X150,X151,X152),X150)|~in(esk4_3(X150,X151,X152),X151))|X152=set_intersection2(X150,X151))&((in(esk4_3(X150,X151,X152),X150)|in(esk4_3(X150,X151,X152),X152)|X152=set_intersection2(X150,X151))&(in(esk4_3(X150,X151,X152),X151)|in(esk4_3(X150,X151,X152),X152)|X152=set_intersection2(X150,X151))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[d3_xboole_0])])])])])])). fof(c_0_25, plain, ![X154, X155, X156, X157, X158, X159, X160, X161]:((((in(X157,X154)|~in(X157,X156)|X156!=set_difference(X154,X155))&(~in(X157,X155)|~in(X157,X156)|X156!=set_difference(X154,X155)))&(~in(X158,X154)|in(X158,X155)|in(X158,X156)|X156!=set_difference(X154,X155)))&((~in(esk5_3(X159,X160,X161),X161)|(~in(esk5_3(X159,X160,X161),X159)|in(esk5_3(X159,X160,X161),X160))|X161=set_difference(X159,X160))&((in(esk5_3(X159,X160,X161),X159)|in(esk5_3(X159,X160,X161),X161)|X161=set_difference(X159,X160))&(~in(esk5_3(X159,X160,X161),X160)|in(esk5_3(X159,X160,X161),X161)|X161=set_difference(X159,X160))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_19])])])])])])). fof(c_0_26, lemma, ![X212, X213, X215, X216, X217]:(((in(esk9_2(X212,X213),X212)|disjoint(X212,X213))&(in(esk9_2(X212,X213),X213)|disjoint(X212,X213)))&(~in(X217,X215)|~in(X217,X216)|~disjoint(X215,X216))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_20])])])])])])). fof(c_0_27, lemma, ![X174, X175]:((set_difference(X174,X175)!=empty_set|subset(X174,X175))&(~subset(X174,X175)|set_difference(X174,X175)=empty_set)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[l32_xboole_1])])). cnf(c_0_28, negated_conjecture, (~in(X1,set_difference(esk12_0,set_difference(esk12_0,esk13_0)))), inference(spm,[status(thm)],[c_0_21, c_0_22])). cnf(c_0_29, plain, (in(esk1_1(X1),X1)|X1=empty_set), inference(split_conjunct,[status(thm)],[c_0_23])). cnf(c_0_30, plain, (in(X1,X2)|~in(X1,X3)|X3!=set_intersection2(X4,X2)), inference(split_conjunct,[status(thm)],[c_0_24])). cnf(c_0_31, plain, (~in(X1,X2)|~in(X1,X3)|X3!=set_difference(X4,X2)), inference(split_conjunct,[status(thm)],[c_0_25])). cnf(c_0_32, negated_conjecture, (~disjoint(esk11_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_17])). cnf(c_0_33, lemma, (in(esk9_2(X1,X2),X2)|disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_26])). fof(c_0_34, plain, ![X124, X125]:(((subset(X124,X125)|X124!=X125)&(subset(X125,X124)|X124!=X125))&(~subset(X124,X125)|~subset(X125,X124)|X124=X125)), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d10_xboole_0])])])). cnf(c_0_35, lemma, (subset(X1,X2)|set_difference(X1,X2)!=empty_set), inference(split_conjunct,[status(thm)],[c_0_27])). cnf(c_0_36, negated_conjecture, (set_difference(esk12_0,set_difference(esk12_0,esk13_0))=empty_set), inference(spm,[status(thm)],[c_0_28, c_0_29])). fof(c_0_37, lemma, ![X205, X206]:subset(set_difference(X205,X206),X205), inference(variable_rename,[status(thm)],[t36_xboole_1])). cnf(c_0_38, plain, (in(X1,X2)|X3!=set_difference(X4,set_difference(X4,X2))|~in(X1,X3)), inference(rw,[status(thm)],[c_0_30, c_0_16])). cnf(c_0_39, lemma, (set_difference(X1,X2)=empty_set|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_27])). cnf(c_0_40, negated_conjecture, (subset(esk11_0,esk12_0)), inference(split_conjunct,[status(thm)],[c_0_17])). fof(c_0_41, plain, ![X211]:set_difference(X211,empty_set)=X211, inference(variable_rename,[status(thm)],[t3_boole])). cnf(c_0_42, plain, (~in(X1,set_difference(X2,X3))|~in(X1,X3)), inference(er,[status(thm)],[c_0_31])). cnf(c_0_43, negated_conjecture, (in(esk9_2(esk11_0,esk13_0),esk13_0)), inference(spm,[status(thm)],[c_0_32, c_0_33])). cnf(c_0_44, plain, (X1=X2|~subset(X1,X2)|~subset(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_34])). cnf(c_0_45, lemma, (subset(esk12_0,set_difference(esk12_0,esk13_0))), inference(spm,[status(thm)],[c_0_35, c_0_36])). cnf(c_0_46, lemma, (subset(set_difference(X1,X2),X1)), inference(split_conjunct,[status(thm)],[c_0_37])). cnf(c_0_47, plain, (in(X1,X2)|~in(X1,set_difference(X3,set_difference(X3,X2)))), inference(er,[status(thm)],[c_0_38])). cnf(c_0_48, negated_conjecture, (set_difference(esk11_0,esk12_0)=empty_set), inference(spm,[status(thm)],[c_0_39, c_0_40])). cnf(c_0_49, plain, (set_difference(X1,empty_set)=X1), inference(split_conjunct,[status(thm)],[c_0_41])). cnf(c_0_50, lemma, (in(esk9_2(X1,X2),X1)|disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_26])). cnf(c_0_51, negated_conjecture, (~in(esk9_2(esk11_0,esk13_0),set_difference(X1,esk13_0))), inference(spm,[status(thm)],[c_0_42, c_0_43])). cnf(c_0_52, lemma, (set_difference(esk12_0,esk13_0)=esk12_0), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_44, c_0_45]), c_0_46])])). cnf(c_0_53, negated_conjecture, (in(X1,esk12_0)|~in(X1,esk11_0)), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_47, c_0_48]), c_0_49])). cnf(c_0_54, negated_conjecture, (in(esk9_2(esk11_0,esk13_0),esk11_0)), inference(spm,[status(thm)],[c_0_32, c_0_50])). cnf(c_0_55, lemma, (~in(esk9_2(esk11_0,esk13_0),esk12_0)), inference(spm,[status(thm)],[c_0_51, c_0_52])). cnf(c_0_56, negated_conjecture, ($false), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_53, c_0_54]), c_0_55]), ['proof']).
# SZS output end CNFRefutation

### Sample solution for NLP042+1

# SZS output start Saturation
fof(co1, conjecture, ~(?[X1]:(actual_world(X1)&?[X2, X3, X4, X5]:((((((((((of(X1,X3,X2)&woman(X1,X2))&mia_forename(X1,X3))&forename(X1,X3))&shake_beverage(X1,X4))&event(X1,X5))&agent(X1,X5,X2))&patient(X1,X5,X4))&past(X1,X5))&nonreflexive(X1,X5))&order(X1,X5)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', co1)).
fof(ax27, axiom, ![X1, X2]:(shake_beverage(X1,X2)=>beverage(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax27)).
fof(ax15, axiom, ![X1, X2]:(relname(X1,X2)=>relation(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax15)).
fof(ax16, axiom, ![X1, X2]:(forename(X1,X2)=>relname(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax16)).
fof(ax26, axiom, ![X1, X2]:(beverage(X1,X2)=>food(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax26)).
fof(ax41, axiom, ![X1, X2]:(specific(X1,X2)=>~(general(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax41)).
fof(ax39, axiom, ![X1, X2]:(nonhuman(X1,X2)=>~(human(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax39)).
fof(ax14, axiom, ![X1, X2]:(relation(X1,X2)=>abstraction(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax14)).
fof(ax42, axiom, ![X1, X2]:(unisex(X1,X2)=>~(female(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax42)).
fof(ax38, axiom, ![X1, X2]:(existent(X1,X2)=>~(nonexistent(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax38)).
fof(ax40, axiom, ![X1, X2]:(nonliving(X1,X2)=>~(living(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax40)).
fof(ax25, axiom, ![X1, X2]:(food(X1,X2)=>substance_matter(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax25)).
fof(ax37, axiom, ![X1, X2]:(animate(X1,X2)=>~(nonliving(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax37)).
fof(ax6, axiom, ![X1, X2]:(organism(X1,X2)=>entity(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax6)).
fof(ax7, axiom, ![X1, X2]:(human_person(X1,X2)=>organism(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax7)).
fof(ax8, axiom, ![X1, X2]:(woman(X1,X2)=>human_person(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax8)).
fof(ax21, axiom, ![X1, X2]:(entity(X1,X2)=>specific(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax21)).
fof(ax12, axiom, ![X1, X2]:(abstraction(X1,X2)=>nonhuman(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax12)).
fof(ax10, axiom, ![X1, X2]:(abstraction(X1,X2)=>unisex(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax10)).
fof(ax30, axiom, ![X1, X2]:(eventuality(X1,X2)=>nonexistent(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax30)).
fof(ax34, axiom, ![X1, X2]:(event(X1,X2)=>eventuality(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax34)).
fof(ax31, axiom, ![X1, X2]:(eventuality(X1,X2)=>specific(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax31)).
fof(ax19, axiom, ![X1, X2]:(object(X1,X2)=>nonliving(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax19)).
fof(ax24, axiom, ![X1, X2]:(substance_matter(X1,X2)=>object(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax24)).
fof(ax17, axiom, ![X1, X2]:(object(X1,X2)=>unisex(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax17)).
fof(ax29, axiom, ![X1, X2]:(eventuality(X1,X2)=>unisex(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax29)).
fof(ax43, axiom, ![X1, X2, X3]:(((entity(X1,X2)&forename(X1,X3))&of(X1,X3,X2))=>~(?[X4]:((forename(X1,X4)&X4!=X3)&of(X1,X4,X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax43)).
fof(ax11, axiom, ![X1, X2]:(abstraction(X1,X2)=>general(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax11)).
fof(ax44, axiom, ![X1, X2, X3, X4]:(((nonreflexive(X1,X2)&agent(X1,X2,X3))&patient(X1,X2,X4))=>X3!=X4), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax44)).
fof(ax3, axiom, ![X1, X2]:(human_person(X1,X2)=>human(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax3)).
fof(ax1, axiom, ![X1, X2]:(woman(X1,X2)=>female(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax1)).
fof(ax20, axiom, ![X1, X2]:(entity(X1,X2)=>existent(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax20)).
fof(ax4, axiom, ![X1, X2]:(organism(X1,X2)=>living(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax4)).
fof(ax2, axiom, ![X1, X2]:(human_person(X1,X2)=>animate(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax2)).
fof(ax23, axiom, ![X1, X2]:(object(X1,X2)=>entity(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax23)).
fof(ax32, axiom, ![X1, X2]:(thing(X1,X2)=>singleton(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax32)).
fof(ax33, axiom, ![X1, X2]:(eventuality(X1,X2)=>thing(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax33)).
fof(ax13, axiom, ![X1, X2]:(abstraction(X1,X2)=>thing(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax13)).
fof(ax22, axiom, ![X1, X2]:(entity(X1,X2)=>thing(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax22)).
fof(ax18, axiom, ![X1, X2]:(object(X1,X2)=>impartial(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax18)).
fof(ax5, axiom, ![X1, X2]:(organism(X1,X2)=>impartial(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax5)).
fof(ax36, axiom, ![X1, X2]:(order(X1,X2)=>act(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax36)).
fof(ax35, axiom, ![X1, X2]:(act(X1,X2)=>event(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax35)).
fof(ax28, axiom, ![X1, X2]:(order(X1,X2)=>event(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax28)).
fof(ax9, axiom, ![X1, X2]:(mia_forename(X1,X2)=>forename(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax9)).
fof(c_0_45, negated_conjecture, ~(~(?[X1]:(actual_world(X1)&?[X2, X3, X4, X5]:((((((((((of(X1,X3,X2)&woman(X1,X2))&mia_forename(X1,X3))&forename(X1,X3))&shake_beverage(X1,X4))&event(X1,X5))&agent(X1,X5,X2))&patient(X1,X5,X4))&past(X1,X5))&nonreflexive(X1,X5))&order(X1,X5))))), inference(assume_negation,[status(cth)],[co1])).
fof(c_0_46, plain, ![X155, X156]:(~shake_beverage(X155,X156)|beverage(X155,X156)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax27])])).
fof(c_0_47, negated_conjecture, (actual_world(esk1_0)&((((((((((of(esk1_0,esk3_0,esk2_0)&woman(esk1_0,esk2_0))&mia_forename(esk1_0,esk3_0))&forename(esk1_0,esk3_0))&shake_beverage(esk1_0,esk4_0))&event(esk1_0,esk5_0))&agent(esk1_0,esk5_0,esk2_0))&patient(esk1_0,esk5_0,esk4_0))&past(esk1_0,esk5_0))&nonreflexive(esk1_0,esk5_0))&order(esk1_0,esk5_0))), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_45])])])).
fof(c_0_48, plain, ![X131, X132]:(~relname(X131,X132)|relation(X131,X132)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax15])])).
fof(c_0_49, plain, ![X133, X134]:(~forename(X133,X134)|relname(X133,X134)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax16])])).
fof(c_0_50, plain, ![X153, X154]:(~beverage(X153,X154)|food(X153,X154)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax26])])).
cnf(c_0_51, plain, (beverage(X1,X2)|~shake_beverage(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_46]), ['final']).
cnf(c_0_52, negated_conjecture, (shake_beverage(esk1_0,esk4_0)), inference(split_conjunct,[status(thm)],[c_0_47]), ['final']).
fof(c_0_53, plain, ![X1, X2]:(specific(X1,X2)=>~general(X1,X2)), inference(fof_simplification,[status(thm)],[ax41])).
fof(c_0_54, plain, ![X1, X2]:(nonhuman(X1,X2)=>~human(X1,X2)), inference(fof_simplification,[status(thm)],[ax39])).
fof(c_0_55, plain, ![X129, X130]:(~relation(X129,X130)|abstraction(X129,X130)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax14])])).
cnf(c_0_56, plain, (relation(X1,X2)|~relname(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_48]), ['final']).
cnf(c_0_57, plain, (relname(X1,X2)|~forename(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_49]), ['final']).
fof(c_0_58, plain, ![X1, X2]:(unisex(X1,X2)=>~female(X1,X2)), inference(fof_simplification,[status(thm)],[ax42])).
fof(c_0_59, plain, ![X1, X2]:(existent(X1,X2)=>~nonexistent(X1,X2)), inference(fof_simplification,[status(thm)],[ax38])).
fof(c_0_60, plain, ![X1, X2]:(nonliving(X1,X2)=>~living(X1,X2)), inference(fof_simplification,[status(thm)],[ax40])).
fof(c_0_61, plain, ![X151, X152]:(~food(X151,X152)|substance_matter(X151,X152)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax25])])).
cnf(c_0_62, plain, (food(X1,X2)|~beverage(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_50]), ['final']).
cnf(c_0_63, negated_conjecture, (beverage(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_51, c_0_52]), ['final']).
fof(c_0_64, plain, ![X1, X2]:(animate(X1,X2)=>~nonliving(X1,X2)), inference(fof_simplification,[status(thm)],[ax37])).
fof(c_0_65, plain, ![X113, X114]:(~organism(X113,X114)|entity(X113,X114)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax6])])).
fof(c_0_66, plain, ![X115, X116]:(~human_person(X115,X116)|organism(X115,X116)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax7])])).
fof(c_0_67, plain, ![X117, X118]:(~woman(X117,X118)|human_person(X117,X118)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax8])])).
fof(c_0_68, plain, ![X183, X184]:(~specific(X183,X184)|~general(X183,X184)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_53])])).
fof(c_0_69, plain, ![X143, X144]:(~entity(X143,X144)|specific(X143,X144)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax21])])).
fof(c_0_70, plain, ![X179, X180]:(~nonhuman(X179,X180)|~human(X179,X180)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_54])])).
fof(c_0_71, plain, ![X125, X126]:(~abstraction(X125,X126)|nonhuman(X125,X126)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax12])])).
cnf(c_0_72, plain, (abstraction(X1,X2)|~relation(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_55]), ['final']).
cnf(c_0_73, plain, (relation(X1,X2)|~forename(X1,X2)), inference(spm,[status(thm)],[c_0_56, c_0_57]), ['final']).
fof(c_0_74, plain, ![X185, X186]:(~unisex(X185,X186)|~female(X185,X186)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_58])])).
fof(c_0_75, plain, ![X121, X122]:(~abstraction(X121,X122)|unisex(X121,X122)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax10])])).
fof(c_0_76, plain, ![X177, X178]:(~existent(X177,X178)|~nonexistent(X177,X178)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_59])])).
fof(c_0_77, plain, ![X161, X162]:(~eventuality(X161,X162)|nonexistent(X161,X162)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax30])])).
fof(c_0_78, plain, ![X169, X170]:(~event(X169,X170)|eventuality(X169,X170)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax34])])).
fof(c_0_79, plain, ![X163, X164]:(~eventuality(X163,X164)|specific(X163,X164)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax31])])).
fof(c_0_80, plain, ![X181, X182]:(~nonliving(X181,X182)|~living(X181,X182)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_60])])).
fof(c_0_81, plain, ![X139, X140]:(~object(X139,X140)|nonliving(X139,X140)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax19])])).
fof(c_0_82, plain, ![X149, X150]:(~substance_matter(X149,X150)|object(X149,X150)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax24])])).
cnf(c_0_83, plain, (substance_matter(X1,X2)|~food(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_61]), ['final']).
cnf(c_0_84, negated_conjecture, (food(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_62, c_0_63]), ['final']).
fof(c_0_85, plain, ![X175, X176]:(~animate(X175,X176)|~nonliving(X175,X176)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_64])])).
fof(c_0_86, plain, ![X135, X136]:(~object(X135,X136)|unisex(X135,X136)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax17])])).
fof(c_0_87, plain, ![X159, X160]:(~eventuality(X159,X160)|unisex(X159,X160)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax29])])).
fof(c_0_88, plain, ![X187, X188, X189, X190]:(~entity(X187,X188)|~forename(X187,X189)|~of(X187,X189,X188)|(~forename(X187,X190)|X190=X189|~of(X187,X190,X188))), inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax43])])])).
cnf(c_0_89, plain, (entity(X1,X2)|~organism(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_65]), ['final']).
cnf(c_0_90, plain, (organism(X1,X2)|~human_person(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_66]), ['final']).
cnf(c_0_91, plain, (human_person(X1,X2)|~woman(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']).
cnf(c_0_92, negated_conjecture, (woman(esk1_0,esk2_0)), inference(split_conjunct,[status(thm)],[c_0_47]), ['final']).
cnf(c_0_93, plain, (~specific(X1,X2)|~general(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_68]), ['final']).
cnf(c_0_94, plain, (specific(X1,X2)|~entity(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_69]), ['final']).
fof(c_0_95, plain, ![X123, X124]:(~abstraction(X123,X124)|general(X123,X124)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax11])])).
cnf(c_0_96, plain, (~nonhuman(X1,X2)|~human(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_70]), ['final']).
cnf(c_0_97, plain, (nonhuman(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_71]), ['final']).
cnf(c_0_98, plain, (abstraction(X1,X2)|~forename(X1,X2)), inference(spm,[status(thm)],[c_0_72, c_0_73]), ['final']).
cnf(c_0_99, negated_conjecture, (forename(esk1_0,esk3_0)), inference(split_conjunct,[status(thm)],[c_0_47]), ['final']).
cnf(c_0_100, plain, (~unisex(X1,X2)|~female(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_74]), ['final']).
cnf(c_0_101, plain, (unisex(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_75]), ['final']).
cnf(c_0_102, plain, (~existent(X1,X2)|~nonexistent(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_76]), ['final']).
cnf(c_0_103, plain, (nonexistent(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_77]), ['final']).
cnf(c_0_104, plain, (eventuality(X1,X2)|~event(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_78]), ['final']).
cnf(c_0_105, negated_conjecture, (event(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_47]), ['final']).
cnf(c_0_106, plain, (specific(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_79]), ['final']).
cnf(c_0_107, plain, (~nonliving(X1,X2)|~living(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_80]), ['final']).
cnf(c_0_108, plain, (nonliving(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_81]), ['final']).
cnf(c_0_109, plain, (object(X1,X2)|~substance_matter(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_82]), ['final']).
cnf(c_0_110, negated_conjecture, (substance_matter(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_83, c_0_84]), ['final']).
cnf(c_0_111, plain, (~animate(X1,X2)|~nonliving(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_85]), ['final']).
cnf(c_0_112, plain, (unisex(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_86]), ['final']).
fof(c_0_113, plain, ![X191, X192, X193, X194]:(~nonreflexive(X191,X192)|~agent(X191,X192,X193)|~patient(X191,X192,X194)|X193!=X194), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax44])])).
cnf(c_0_114, plain, (unisex(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_87]), ['final']).
cnf(c_0_115, plain, (X4=X3|~entity(X1,X2)|~forename(X1,X3)|~of(X1,X3,X2)|~forename(X1,X4)|~of(X1,X4,X2)), inference(split_conjunct,[status(thm)],[c_0_88]), ['final']).
cnf(c_0_116, negated_conjecture, (of(esk1_0,esk3_0,esk2_0)), inference(split_conjunct,[status(thm)],[c_0_47]), ['final']).
cnf(c_0_117, plain, (entity(X1,X2)|~human_person(X1,X2)), inference(spm,[status(thm)],[c_0_89, c_0_90]), ['final']).
cnf(c_0_118, negated_conjecture, (human_person(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_91, c_0_92]), ['final']).
cnf(c_0_119, plain, (~general(X1,X2)|~entity(X1,X2)), inference(spm,[status(thm)],[c_0_93, c_0_94]), ['final']).
cnf(c_0_120, plain, (general(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_95]), ['final']).
cnf(c_0_121, plain, (~abstraction(X1,X2)|~human(X1,X2)), inference(spm,[status(thm)],[c_0_96, c_0_97]), ['final']).
cnf(c_0_122, negated_conjecture, (abstraction(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_98, c_0_99]), ['final']).
fof(c_0_123, plain, ![X107, X108]:(~human_person(X107,X108)|human(X107,X108)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax3])])).
cnf(c_0_124, plain, (~abstraction(X1,X2)|~female(X1,X2)), inference(spm,[status(thm)],[c_0_100, c_0_101]), ['final']).
fof(c_0_125, plain, ![X103, X104]:(~woman(X103,X104)|female(X103,X104)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax1])])).
cnf(c_0_126, plain, (~eventuality(X1,X2)|~existent(X1,X2)), inference(spm,[status(thm)],[c_0_102, c_0_103]), ['final']).
cnf(c_0_127, negated_conjecture, (eventuality(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_104, c_0_105]), ['final']).
fof(c_0_128, plain, ![X141, X142]:(~entity(X141,X142)|existent(X141,X142)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax20])])).
cnf(c_0_129, plain, (~eventuality(X1,X2)|~general(X1,X2)), inference(spm,[status(thm)],[c_0_93, c_0_106]), ['final']).
cnf(c_0_130, plain, (~object(X1,X2)|~living(X1,X2)), inference(spm,[status(thm)],[c_0_107, c_0_108]), ['final']).
cnf(c_0_131, negated_conjecture, (object(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_109, c_0_110]), ['final']).
fof(c_0_132, plain, ![X109, X110]:(~organism(X109,X110)|living(X109,X110)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax4])])).
cnf(c_0_133, plain, (~object(X1,X2)|~animate(X1,X2)), inference(spm,[status(thm)],[c_0_111, c_0_108]), ['final']).
fof(c_0_134, plain, ![X105, X106]:(~human_person(X105,X106)|animate(X105,X106)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax2])])).
cnf(c_0_135, plain, (~object(X1,X2)|~female(X1,X2)), inference(spm,[status(thm)],[c_0_100, c_0_112]), ['final']).
cnf(c_0_136, plain, (~nonreflexive(X1,X2)|~agent(X1,X2,X3)|~patient(X1,X2,X4)|X3!=X4), inference(split_conjunct,[status(thm)],[c_0_113])).
cnf(c_0_137, plain, (~eventuality(X1,X2)|~female(X1,X2)), inference(spm,[status(thm)],[c_0_100, c_0_114]), ['final']).
fof(c_0_138, plain, ![X147, X148]:(~object(X147,X148)|entity(X147,X148)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax23])])).
cnf(c_0_139, negated_conjecture, (X1=esk3_0|~of(esk1_0,X1,esk2_0)|~forename(esk1_0,X1)|~entity(esk1_0,esk2_0)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_115, c_0_116]), c_0_99])])).
cnf(c_0_140, negated_conjecture, (entity(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_117, c_0_118]), ['final']).
fof(c_0_141, plain, ![X165, X166]:(~thing(X165,X166)|singleton(X165,X166)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax32])])).
fof(c_0_142, plain, ![X167, X168]:(~eventuality(X167,X168)|thing(X167,X168)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax33])])).
fof(c_0_143, plain, ![X127, X128]:(~abstraction(X127,X128)|thing(X127,X128)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax13])])).
fof(c_0_144, plain, ![X145, X146]:(~entity(X145,X146)|thing(X145,X146)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax22])])).
fof(c_0_145, plain, ![X137, X138]:(~object(X137,X138)|impartial(X137,X138)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax18])])).
fof(c_0_146, plain, ![X111, X112]:(~organism(X111,X112)|impartial(X111,X112)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax5])])).
fof(c_0_147, plain, ![X173, X174]:(~order(X173,X174)|act(X173,X174)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax36])])).
fof(c_0_148, plain, ![X171, X172]:(~act(X171,X172)|event(X171,X172)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax35])])).
fof(c_0_149, plain, ![X157, X158]:(~order(X157,X158)|event(X157,X158)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax28])])).
fof(c_0_150, plain, ![X119, X120]:(~mia_forename(X119,X120)|forename(X119,X120)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax9])])).
cnf(c_0_151, plain, (~abstraction(X1,X2)|~entity(X1,X2)), inference(spm,[status(thm)],[c_0_119, c_0_120]), ['final']).
cnf(c_0_152, negated_conjecture, (~human(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_121, c_0_122]), ['final']).
cnf(c_0_153, plain, (human(X1,X2)|~human_person(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_123]), ['final']).
cnf(c_0_154, negated_conjecture, (~female(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_124, c_0_122]), ['final']).
cnf(c_0_155, plain, (female(X1,X2)|~woman(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_125]), ['final']).
cnf(c_0_156, negated_conjecture, (~existent(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_126, c_0_127]), ['final']).
cnf(c_0_157, plain, (existent(X1,X2)|~entity(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_128]), ['final']).
cnf(c_0_158, negated_conjecture, (~general(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_129, c_0_127]), ['final']).
cnf(c_0_159, negated_conjecture, (~living(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_130, c_0_131]), ['final']).
cnf(c_0_160, plain, (living(X1,X2)|~organism(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_132]), ['final']).
cnf(c_0_161, negated_conjecture, (~animate(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_133, c_0_131]), ['final']).
cnf(c_0_162, plain, (animate(X1,X2)|~human_person(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_134]), ['final']).
cnf(c_0_163, negated_conjecture, (~female(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_135, c_0_131]), ['final']).
cnf(c_0_164, plain, (~patient(X1,X2,X3)|~agent(X1,X2,X3)|~nonreflexive(X1,X2)), inference(er,[status(thm)],[c_0_136]), ['final']).
cnf(c_0_165, negated_conjecture, (patient(esk1_0,esk5_0,esk4_0)), inference(split_conjunct,[status(thm)],[c_0_47]), ['final']).
cnf(c_0_166, negated_conjecture, (nonreflexive(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_47]), ['final']).
cnf(c_0_167, negated_conjecture, (~female(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_137, c_0_127]), ['final']).
cnf(c_0_168, plain, (entity(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_138]), ['final']).
cnf(c_0_169, negated_conjecture, (X1=esk3_0|~of(esk1_0,X1,esk2_0)|~forename(esk1_0,X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_139, c_0_140])]), ['final']).
cnf(c_0_170, plain, (singleton(X1,X2)|~thing(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_141]), ['final']).
cnf(c_0_171, plain, (thing(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_142]), ['final']).
cnf(c_0_172, plain, (thing(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_143]), ['final']).
cnf(c_0_173, plain, (thing(X1,X2)|~entity(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_144]), ['final']).
cnf(c_0_174, plain, (impartial(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_145]), ['final']).
cnf(c_0_175, plain, (impartial(X1,X2)|~organism(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_146]), ['final']).
cnf(c_0_176, plain, (act(X1,X2)|~order(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_147]), ['final']).
cnf(c_0_177, plain, (event(X1,X2)|~act(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_148]), ['final']).
cnf(c_0_178, plain, (event(X1,X2)|~order(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_149]), ['final']).
cnf(c_0_179, plain, (forename(X1,X2)|~mia_forename(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_150]), ['final']).
cnf(c_0_180, negated_conjecture, (~entity(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_151, c_0_122]), ['final']).
cnf(c_0_181, negated_conjecture, (~human_person(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_152, c_0_153]), ['final']).
cnf(c_0_182, negated_conjecture, (~woman(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_154, c_0_155]), ['final']).
cnf(c_0_183, negated_conjecture, (~entity(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_156, c_0_157]), ['final']).
cnf(c_0_184, negated_conjecture, (~abstraction(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_158, c_0_120]), ['final']).
cnf(c_0_185, negated_conjecture, (~organism(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_159, c_0_160]), ['final']).
cnf(c_0_186, negated_conjecture, (~human_person(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_161, c_0_162]), ['final']).
cnf(c_0_187, negated_conjecture, (~woman(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_163, c_0_155]), ['final']).
cnf(c_0_188, negated_conjecture, (~agent(esk1_0,esk5_0,esk4_0)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_164, c_0_165]), c_0_166])]), ['final']).
cnf(c_0_189, negated_conjecture, (~woman(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_167, c_0_155]), ['final']).
cnf(c_0_190, negated_conjecture, (entity(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_168, c_0_131]), ['final']).
cnf(c_0_191, negated_conjecture, (agent(esk1_0,esk5_0,esk2_0)), inference(split_conjunct,[status(thm)],[c_0_47]), ['final']).
cnf(c_0_192, negated_conjecture, (past(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_47]), ['final']).
cnf(c_0_193, negated_conjecture, (order(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_47]), ['final']).
cnf(c_0_194, negated_conjecture, (mia_forename(esk1_0,esk3_0)), inference(split_conjunct,[status(thm)],[c_0_47]), ['final']).
cnf(c_0_195, negated_conjecture, (actual_world(esk1_0)), inference(split_conjunct,[status(thm)],[c_0_47]), ['final']).
# SZS output end Saturation

### Sample solution for SWV017+1

# SZS output start Saturation
fof(server_t_generates_key, axiom, ![X1, X2, X3, X4, X5, X6, X7]:((((message(sent(X1,t,triple(X1,X2,encrypt(triple(X3,X4,X5),X6))))&t_holds(key(X6,X1)))&t_holds(key(X7,X3)))&a_nonce(X4))=>message(sent(t,X3,triple(encrypt(quadruple(X1,X4,generate_key(X4),X5),X7),encrypt(triple(X3,generate_key(X4),X5),X6),X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', server_t_generates_key)).
fof(b_creates_freash_nonces_in_time, axiom, ![X1, X2]:((message(sent(X1,b,pair(X1,X2)))&fresh_to_b(X2))=>(message(sent(b,t,triple(b,generate_b_nonce(X2),encrypt(triple(X1,X2,generate_expiration_time(X2)),bt))))&b_stored(pair(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', b_creates_freash_nonces_in_time)).
fof(intruder_message_sent, axiom, ![X1, X2, X3]:(((intruder_message(X1)&party_of_protocol(X2))&party_of_protocol(X3))=>message(sent(X2,X3,X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_message_sent)).
fof(t_holds_key_at_for_a, axiom, t_holds(key(at,a)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', t_holds_key_at_for_a)).
fof(intruder_can_record, axiom, ![X1, X2, X3]:(message(sent(X1,X2,X3))=>intruder_message(X3)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_can_record)).
fof(a_sent_message_i_to_b, axiom, message(sent(a,b,pair(a,an_a_nonce))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', a_sent_message_i_to_b)).
fof(nonce_a_is_fresh_to_b, axiom, fresh_to_b(an_a_nonce), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', nonce_a_is_fresh_to_b)).
fof(b_is_party_of_protocol, axiom, party_of_protocol(b), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', b_is_party_of_protocol)).
fof(intruder_composes_pairs, axiom, ![X1, X2]:((intruder_message(X1)&intruder_message(X2))=>intruder_message(pair(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_composes_pairs)).
fof(a_forwards_secure, axiom, ![X1, X2, X3, X4, X5, X6]:((message(sent(t,a,triple(encrypt(quadruple(X5,X6,X3,X2),at),X4,X1)))&a_stored(pair(X5,X6)))=>(message(sent(a,X5,pair(X4,encrypt(X1,X3))))&a_holds(key(X3,X5)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', a_forwards_secure)).
fof(t_holds_key_bt_for_b, axiom, t_holds(key(bt,b)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', t_holds_key_bt_for_b)).
fof(intruder_decomposes_triples, axiom, ![X1, X2, X3]:(intruder_message(triple(X1,X2,X3))=>((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_decomposes_triples)).
fof(b_accepts_secure_session_key, axiom, ![X2, X4, X5]:(((message(sent(X4,b,pair(encrypt(triple(X4,X2,generate_expiration_time(X5)),bt),encrypt(generate_b_nonce(X5),X2))))&a_key(X2))&b_stored(pair(X4,X5)))=>b_holds(key(X2,X4))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', b_accepts_secure_session_key)).
fof(a_stored_message_i, axiom, a_stored(pair(b,an_a_nonce)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', a_stored_message_i)).
fof(an_a_nonce_is_a_nonce, axiom, a_nonce(an_a_nonce), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', an_a_nonce_is_a_nonce)).
fof(t_is_party_of_protocol, axiom, party_of_protocol(t), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', t_is_party_of_protocol)).
fof(intruder_composes_triples, axiom, ![X1, X2, X3]:(((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))=>intruder_message(triple(X1,X2,X3))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_composes_triples)).
fof(intruder_key_encrypts, axiom, ![X1, X2, X3]:(((intruder_message(X1)&intruder_holds(key(X2,X3)))&party_of_protocol(X3))=>intruder_message(encrypt(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_key_encrypts)).
fof(intruder_holds_key, axiom, ![X2, X3]:((intruder_message(X2)&party_of_protocol(X3))=>intruder_holds(key(X2,X3))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_holds_key)).
fof(intruder_decomposes_pairs, axiom, ![X1, X2]:(intruder_message(pair(X1,X2))=>(intruder_message(X1)&intruder_message(X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_decomposes_pairs)).
fof(a_is_party_of_protocol, axiom, party_of_protocol(a), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', a_is_party_of_protocol)).
fof(generated_keys_are_keys, axiom, ![X1]:a_key(generate_key(X1)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', generated_keys_are_keys)).
fof(fresh_intruder_nonces_are_fresh_to_b, axiom, ![X1]:(fresh_intruder_nonce(X1)=>(fresh_to_b(X1)&intruder_message(X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', fresh_intruder_nonces_are_fresh_to_b)).
fof(can_generate_more_fresh_intruder_nonces, axiom, ![X1]:(fresh_intruder_nonce(X1)=>fresh_intruder_nonce(generate_intruder_nonce(X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', can_generate_more_fresh_intruder_nonces)).
fof(generated_keys_are_not_nonces, axiom, ![X1]:~(a_nonce(generate_key(X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', generated_keys_are_not_nonces)).
fof(intruder_interception, axiom, ![X1, X2, X3]:(((intruder_message(encrypt(X1,X2))&intruder_holds(key(X2,X3)))&party_of_protocol(X3))=>intruder_message(X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_interception)).
fof(nothing_is_a_nonce_and_a_key, axiom, ![X1]:~((a_key(X1)&a_nonce(X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', nothing_is_a_nonce_and_a_key)).
fof(an_intruder_nonce_is_a_fresh_intruder_nonce, axiom, fresh_intruder_nonce(an_intruder_nonce), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', an_intruder_nonce_is_a_fresh_intruder_nonce)).
fof(generated_times_and_nonces_are_nonces, axiom, ![X1]:(a_nonce(generate_expiration_time(X1))&a_nonce(generate_b_nonce(X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', generated_times_and_nonces_are_nonces)).
fof(b_hold_key_bt_for_t, axiom, b_holds(key(bt,t)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', b_hold_key_bt_for_t)).
fof(a_holds_key_at_for_t, axiom, a_holds(key(at,t)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', a_holds_key_at_for_t)).
fof(c_0_33, plain, ![X75, X76, X77, X78, X79, X80, X81]:(~message(sent(X75,t,triple(X75,X76,encrypt(triple(X77,X78,X79),X80))))|~t_holds(key(X80,X75))|~t_holds(key(X81,X77))|~a_nonce(X78)|message(sent(t,X77,triple(encrypt(quadruple(X75,X78,generate_key(X78),X79),X81),encrypt(triple(X77,generate_key(X78),X79),X80),X76)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[server_t_generates_key])])).
fof(c_0_34, plain, ![X70, X71]:((message(sent(b,t,triple(b,generate_b_nonce(X71),encrypt(triple(X70,X71,generate_expiration_time(X71)),bt))))|(~message(sent(X70,b,pair(X70,X71)))|~fresh_to_b(X71)))&(b_stored(pair(X70,X71))|(~message(sent(X70,b,pair(X70,X71)))|~fresh_to_b(X71)))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[b_creates_freash_nonces_in_time])])])).
fof(c_0_35, plain, ![X106, X107, X108]:(~intruder_message(X106)|~party_of_protocol(X107)|~party_of_protocol(X108)|message(sent(X107,X108,X106))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_message_sent])])).
cnf(c_0_37, plain, (t_holds(key(at,a))), inference(split_conjunct,[status(thm)],[t_holds_key_at_for_a]), ['final']).
fof(c_0_38, plain, ![X82, X83, X84]:(~message(sent(X82,X83,X84))|intruder_message(X84)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_can_record])])).
cnf(c_0_39, plain, (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~message(sent(X2,b,pair(X2,X1)))|~fresh_to_b(X1)), inference(split_conjunct,[status(thm)],[c_0_34]), ['final']).
cnf(c_0_40, plain, (message(sent(a,b,pair(a,an_a_nonce)))), inference(split_conjunct,[status(thm)],[a_sent_message_i_to_b]), ['final']).
cnf(c_0_41, plain, (fresh_to_b(an_a_nonce)), inference(split_conjunct,[status(thm)],[nonce_a_is_fresh_to_b]), ['final']).
cnf(c_0_42, plain, (b_stored(pair(X1,X2))|~message(sent(X1,b,pair(X1,X2)))|~fresh_to_b(X2)), inference(split_conjunct,[status(thm)],[c_0_34]), ['final']).
cnf(c_0_43, plain, (message(sent(X2,X3,X1))|~intruder_message(X1)|~party_of_protocol(X2)|~party_of_protocol(X3)), inference(split_conjunct,[status(thm)],[c_0_35]), ['final']).
cnf(c_0_44, plain, (party_of_protocol(b)), inference(split_conjunct,[status(thm)],[b_is_party_of_protocol]), ['final']).
fof(c_0_45, plain, ![X94, X95]:(~intruder_message(X94)|~intruder_message(X95)|intruder_message(pair(X94,X95))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_composes_pairs])])).
cnf(c_0_47, plain, (message(sent(t,a,triple(encrypt(quadruple(X1,X2,generate_key(X2),X3),at),encrypt(triple(a,generate_key(X2),X3),X4),X5)))|~a_nonce(X2)|~t_holds(key(X4,X1))|~message(sent(X1,t,triple(X1,X5,encrypt(triple(a,X2,X3),X4))))), inference(spm,[status(thm)],[c_0_36, c_0_37]), ['final']).
cnf(c_0_48, plain, (t_holds(key(bt,b))), inference(split_conjunct,[status(thm)],[t_holds_key_bt_for_b]), ['final']).
fof(c_0_49, plain, ![X87, X88, X89]:(((intruder_message(X87)|~intruder_message(triple(X87,X88,X89)))&(intruder_message(X88)|~intruder_message(triple(X87,X88,X89))))&(intruder_message(X89)|~intruder_message(triple(X87,X88,X89)))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_decomposes_triples])])])).
cnf(c_0_50, plain, (intruder_message(X3)|~message(sent(X1,X2,X3))), inference(split_conjunct,[status(thm)],[c_0_38]), ['final']).
cnf(c_0_51, plain, (message(sent(b,t,triple(b,generate_b_nonce(an_a_nonce),encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt))))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_39, c_0_40]), c_0_41])]), ['final']).
fof(c_0_52, plain, ![X72, X73, X74]:(~message(sent(X73,b,pair(encrypt(triple(X73,X72,generate_expiration_time(X74)),bt),encrypt(generate_b_nonce(X74),X72))))|~a_key(X72)|~b_stored(pair(X73,X74))|b_holds(key(X72,X73))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[b_accepts_secure_session_key])])).
cnf(c_0_53, plain, (b_stored(pair(X1,X2))|~intruder_message(pair(X1,X2))|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_42, c_0_43]), c_0_44])]), ['final']).
cnf(c_0_54, plain, (intruder_message(pair(X1,X2))|~intruder_message(X1)|~intruder_message(X2)), inference(split_conjunct,[status(thm)],[c_0_45]), ['final']).
cnf(c_0_56, plain, (a_stored(pair(b,an_a_nonce))), inference(split_conjunct,[status(thm)],[a_stored_message_i]), ['final']).
cnf(c_0_57, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~a_nonce(X1)|~message(sent(b,t,triple(b,X3,encrypt(triple(a,X1,X2),bt))))), inference(spm,[status(thm)],[c_0_47, c_0_48]), ['final']).
cnf(c_0_58, plain, (a_nonce(an_a_nonce)), inference(split_conjunct,[status(thm)],[an_a_nonce_is_a_nonce]), ['final']).
cnf(c_0_59, plain, (party_of_protocol(t)), inference(split_conjunct,[status(thm)],[t_is_party_of_protocol]), ['final']).
fof(c_0_60, plain, ![X96, X97, X98]:(~intruder_message(X96)|~intruder_message(X97)|~intruder_message(X98)|intruder_message(triple(X96,X97,X98))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_composes_triples])])).
cnf(c_0_61, plain, (intruder_message(X1)|~intruder_message(triple(X1,X2,X3))), inference(split_conjunct,[status(thm)],[c_0_49]), ['final']).
cnf(c_0_62, plain, (intruder_message(triple(b,generate_b_nonce(an_a_nonce),encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt)))), inference(spm,[status(thm)],[c_0_50, c_0_51]), ['final']).
cnf(c_0_63, plain, (b_holds(key(X2,X1))|~message(sent(X1,b,pair(encrypt(triple(X1,X2,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X2))))|~a_key(X2)|~b_stored(pair(X1,X3))), inference(split_conjunct,[status(thm)],[c_0_52]), ['final']).
cnf(c_0_64, plain, (b_stored(pair(X1,X2))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_53, c_0_54]), ['final']).
fof(c_0_65, plain, ![X111, X112, X113]:(~intruder_message(X111)|~intruder_holds(key(X112,X113))|~party_of_protocol(X113)|intruder_message(encrypt(X111,X112))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_key_encrypts])])).
fof(c_0_66, plain, ![X109, X110]:(~intruder_message(X109)|~party_of_protocol(X110)|intruder_holds(key(X109,X110))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_holds_key])])).
cnf(c_0_67, plain, (message(sent(t,b,triple(encrypt(quadruple(X1,X2,generate_key(X2),X3),bt),encrypt(triple(b,generate_key(X2),X3),X4),X5)))|~a_nonce(X2)|~t_holds(key(X4,X1))|~message(sent(X1,t,triple(X1,X5,encrypt(triple(b,X2,X3),X4))))), inference(spm,[status(thm)],[c_0_36, c_0_48]), ['final']).
cnf(c_0_68, plain, (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~intruder_message(pair(X2,X1))|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_39, c_0_43]), c_0_44])]), ['final']).
fof(c_0_69, plain, ![X85, X86]:((intruder_message(X85)|~intruder_message(pair(X85,X86)))&(intruder_message(X86)|~intruder_message(pair(X85,X86)))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_decomposes_pairs])])])).
cnf(c_0_70, plain, (message(sent(a,b,pair(X1,encrypt(X2,X3))))|~message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,X3,X4),at),X1,X2)))), inference(spm,[status(thm)],[c_0_55, c_0_56]), ['final']).
cnf(c_0_71, plain, (party_of_protocol(a)), inference(split_conjunct,[status(thm)],[a_is_party_of_protocol]), ['final']).
cnf(c_0_72, plain, (message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),generate_b_nonce(an_a_nonce))))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_57, c_0_51]), c_0_58])]), ['final']).
cnf(c_0_73, plain, (b_stored(pair(a,an_a_nonce))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_42, c_0_40]), c_0_41])]), ['final']).
cnf(c_0_74, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(b,X3,encrypt(triple(a,X1,X2),bt)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_57, c_0_43]), c_0_59]), c_0_44])]), ['final']).
cnf(c_0_75, plain, (intruder_message(triple(X1,X2,X3))|~intruder_message(X1)|~intruder_message(X2)|~intruder_message(X3)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']).
cnf(c_0_76, plain, (intruder_message(b)), inference(spm,[status(thm)],[c_0_61, c_0_62]), ['final']).
cnf(c_0_77, plain, (intruder_message(X1)|~intruder_message(triple(X2,X3,X1))), inference(split_conjunct,[status(thm)],[c_0_49]), ['final']).
cnf(c_0_78, plain, (b_holds(key(X1,X2))|~intruder_message(X3)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X3)|~message(sent(X2,b,pair(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X1))))|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_63, c_0_64]), ['final']).
cnf(c_0_79, plain, (intruder_message(encrypt(X1,X2))|~intruder_message(X1)|~intruder_holds(key(X2,X3))|~party_of_protocol(X3)), inference(split_conjunct,[status(thm)],[c_0_65]), ['final']).
cnf(c_0_80, plain, (intruder_holds(key(X1,X2))|~intruder_message(X1)|~party_of_protocol(X2)), inference(split_conjunct,[status(thm)],[c_0_66]), ['final']).
cnf(c_0_81, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~a_nonce(X1)|~message(sent(b,t,triple(b,X3,encrypt(triple(b,X1,X2),bt))))), inference(spm,[status(thm)],[c_0_67, c_0_48]), ['final']).
cnf(c_0_82, plain, (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_68, c_0_54]), ['final']).
cnf(c_0_83, plain, (intruder_message(X1)|~intruder_message(pair(X1,X2))), inference(split_conjunct,[status(thm)],[c_0_69]), ['final']).
cnf(c_0_84, plain, (intruder_message(pair(a,an_a_nonce))), inference(spm,[status(thm)],[c_0_50, c_0_40]), ['final']).
cnf(c_0_85, plain, (message(sent(a,b,pair(X1,encrypt(X2,X3))))|~intruder_message(triple(encrypt(quadruple(b,an_a_nonce,X3,X4),at),X1,X2))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_70, c_0_43]), c_0_71]), c_0_59])]), ['final']).
cnf(c_0_86, plain, (intruder_message(triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),generate_b_nonce(an_a_nonce)))), inference(spm,[status(thm)],[c_0_50, c_0_72]), ['final']).
cnf(c_0_87, plain, (b_holds(key(X1,a))|~a_key(X1)|~message(sent(a,b,pair(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),X1))))), inference(spm,[status(thm)],[c_0_63, c_0_73]), ['final']).
cnf(c_0_88, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~intruder_message(encrypt(triple(a,X1,X2),bt))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_74, c_0_75]), c_0_76])]), ['final']).
cnf(c_0_89, plain, (intruder_message(encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_77, c_0_62]), ['final']).
cnf(c_0_90, plain, (b_holds(key(X1,X2))|~intruder_message(pair(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X1)))|~intruder_message(X3)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_78, c_0_43]), c_0_44])]), ['final']).
cnf(c_0_91, plain, (intruder_message(encrypt(X1,X2))|~intruder_message(X1)|~intruder_message(X2)|~party_of_protocol(X3)), inference(spm,[status(thm)],[c_0_79, c_0_80])).
cnf(c_0_92, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1))))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_81, c_0_82]), c_0_76]), c_0_44])]), ['final']).
cnf(c_0_93, plain, (intruder_message(a)), inference(spm,[status(thm)],[c_0_83, c_0_84]), ['final']).
cnf(c_0_94, plain, (message(sent(a,b,pair(X1,encrypt(X2,X3))))|~intruder_message(encrypt(quadruple(b,an_a_nonce,X3,X4),at))|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_85, c_0_75]), ['final']).
cnf(c_0_95, plain, (intruder_message(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at))), inference(spm,[status(thm)],[c_0_61, c_0_86]), ['final']).
cnf(c_0_96, plain, (message(sent(a,b,pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))))), inference(spm,[status(thm)],[c_0_70, c_0_72]), ['final']).
cnf(c_0_97, plain, (b_holds(key(X1,a))|~intruder_message(pair(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),X1)))|~a_key(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_87, c_0_43]), c_0_44]), c_0_71])]), ['final']).
cnf(c_0_99, plain, (message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),X1)))|~intruder_message(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_88, c_0_89]), c_0_58])]), ['final']).
cnf(c_0_100, plain, (intruder_message(triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt)))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_50, c_0_82]), ['final']).
cnf(c_0_101, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(b,X3,encrypt(triple(b,X1,X2),bt)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_81, c_0_43]), c_0_59]), c_0_44])]), ['final']).
cnf(c_0_102, plain, (b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt))|~intruder_message(encrypt(generate_b_nonce(X3),X1))|~intruder_message(X3)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_90, c_0_54]), ['final']).
cnf(c_0_103, plain, (intruder_message(encrypt(X1,X2))|~intruder_message(X1)|~intruder_message(X2)), inference(spm,[status(thm)],[c_0_91, c_0_44]), ['final']).
cnf(c_0_104, plain, (intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1)))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_50, c_0_92]), ['final']).
cnf(c_0_105, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1))))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_57, c_0_82]), c_0_93]), c_0_71])]), ['final']).
cnf(c_0_106, plain, (message(sent(a,b,pair(X1,encrypt(X2,generate_key(an_a_nonce)))))|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_94, c_0_95]), ['final']).
cnf(c_0_107, plain, (message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~a_nonce(X1)|~message(sent(a,t,triple(a,X3,encrypt(triple(a,X1,X2),at))))), inference(spm,[status(thm)],[c_0_47, c_0_37]), ['final']).
fof(c_0_108, plain, ![X117]:a_key(generate_key(X117)), inference(variable_rename,[status(thm)],[generated_keys_are_keys])).
cnf(c_0_109, plain, (intruder_message(X1)|~intruder_message(triple(X2,X1,X3))), inference(split_conjunct,[status(thm)],[c_0_49]), ['final']).
cnf(c_0_110, plain, (intruder_message(X1)|~intruder_message(pair(X2,X1))), inference(split_conjunct,[status(thm)],[c_0_69]), ['final']).
cnf(c_0_111, plain, (intruder_message(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))))), inference(spm,[status(thm)],[c_0_50, c_0_96]), ['final']).
cnf(c_0_112, plain, (message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~a_nonce(X1)|~message(sent(a,t,triple(a,X3,encrypt(triple(b,X1,X2),at))))), inference(spm,[status(thm)],[c_0_67, c_0_37]), ['final']).
cnf(c_0_113, plain, (b_holds(key(X1,a))|~intruder_message(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt))|~intruder_message(encrypt(generate_b_nonce(an_a_nonce),X1))|~a_key(X1)), inference(spm,[status(thm)],[c_0_97, c_0_54]), ['final']).
cnf(c_0_114, plain, (a_holds(key(X1,b))|~message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,X1,X2),at),X3,X4)))), inference(spm,[status(thm)],[c_0_98, c_0_56]), ['final']).
fof(c_0_115, plain, ![X119]:((fresh_to_b(X119)|~fresh_intruder_nonce(X119))&(intruder_message(X119)|~fresh_intruder_nonce(X119))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[fresh_intruder_nonces_are_fresh_to_b])])])).
cnf(c_0_116, plain, (message(sent(a,b,pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce)))))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_70, c_0_99]), ['final']).
cnf(c_0_117, plain, (intruder_message(encrypt(triple(X1,X2,generate_expiration_time(X2)),bt))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_77, c_0_100]), ['final']).
cnf(c_0_118, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~intruder_message(encrypt(triple(b,X1,X2),bt))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_101, c_0_75]), c_0_76])]), ['final']).
cnf(c_0_119, plain, (b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt))|~intruder_message(generate_b_nonce(X3))|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_102, c_0_103]), ['final']).
cnf(c_0_120, plain, (intruder_message(generate_b_nonce(X1))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_77, c_0_104]), ['final']).
cnf(c_0_121, plain, (intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1)))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_50, c_0_105]), ['final']).
cnf(c_0_122, plain, (intruder_message(pair(X1,encrypt(X2,generate_key(an_a_nonce))))|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_50, c_0_106]), ['final']).
cnf(c_0_123, plain, (message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~intruder_message(triple(a,X3,encrypt(triple(a,X1,X2),at)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_107, c_0_43]), c_0_59]), c_0_71])]), ['final']).
cnf(c_0_124, plain, (a_key(generate_key(X1))), inference(split_conjunct,[status(thm)],[c_0_108]), ['final']).
cnf(c_0_125, plain, (intruder_message(generate_b_nonce(X1))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_109, c_0_100]), ['final']).
cnf(c_0_126, plain, (intruder_message(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))), inference(spm,[status(thm)],[c_0_110, c_0_111]), ['final']).
cnf(c_0_127, plain, (intruder_message(an_a_nonce)), inference(spm,[status(thm)],[c_0_110, c_0_84]), ['final']).
cnf(c_0_128, plain, (message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~intruder_message(triple(a,X3,encrypt(triple(b,X1,X2),at)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_112, c_0_43]), c_0_59]), c_0_71])]), ['final']).
cnf(c_0_129, plain, (intruder_message(generate_b_nonce(an_a_nonce))), inference(spm,[status(thm)],[c_0_109, c_0_62]), ['final']).
cnf(c_0_130, plain, (b_holds(key(X1,a))|~intruder_message(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt))|~intruder_message(generate_b_nonce(an_a_nonce))|~intruder_message(X1)|~a_key(X1)), inference(spm,[status(thm)],[c_0_113, c_0_103])).
cnf(c_0_131, plain, (a_holds(key(X1,b))|~intruder_message(triple(encrypt(quadruple(b,an_a_nonce,X1,X2),at),X3,X4))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_114, c_0_43]), c_0_71]), c_0_59])]), ['final']).
fof(c_0_132, plain, ![X118]:(~fresh_intruder_nonce(X118)|fresh_intruder_nonce(generate_intruder_nonce(X118))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[can_generate_more_fresh_intruder_nonces])])).
fof(c_0_133, plain, ![X1]:~a_nonce(generate_key(X1)), inference(fof_simplification,[status(thm)],[generated_keys_are_not_nonces])).
cnf(c_0_134, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)),generate_expiration_time(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))),bt))))|~fresh_to_b(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_68, c_0_111]), ['final']).
cnf(c_0_135, plain, (fresh_to_b(X1)|~fresh_intruder_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_115]), ['final']).
cnf(c_0_136, plain, (intruder_message(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce))))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_50, c_0_116]), ['final']).
cnf(c_0_137, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),X2)))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_88, c_0_117]), c_0_93]), c_0_71])]), ['final']).
cnf(c_0_138, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),X2)))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_118, c_0_117]), c_0_76]), c_0_44])]), ['final']).
cnf(c_0_139, plain, (b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt))|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X3)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_119, c_0_120]), ['final']).
cnf(c_0_140, plain, (intruder_message(encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_109, c_0_121]), ['final']).
cnf(c_0_141, plain, (intruder_message(encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_109, c_0_104]), ['final']).
cnf(c_0_142, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(X2,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_68, c_0_122]), ['final']).
cnf(c_0_143, plain, (message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~intruder_message(encrypt(triple(a,X1,X2),at))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_123, c_0_75]), c_0_93])]), ['final']).
cnf(c_0_144, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(a,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_39, c_0_106]), c_0_93])]), ['final']).
cnf(c_0_145, plain, (b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(encrypt(triple(X1,generate_key(an_a_nonce),generate_expiration_time(X2)),bt))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_90, c_0_122]), c_0_124])]), c_0_125]), ['final']).
cnf(c_0_146, plain, (b_stored(pair(X1,encrypt(X2,generate_key(an_a_nonce))))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(encrypt(X2,generate_key(an_a_nonce)))|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_53, c_0_122]), ['final']).
cnf(c_0_147, plain, (b_stored(pair(a,encrypt(X1,generate_key(an_a_nonce))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_42, c_0_106]), c_0_93])]), ['final']).
cnf(c_0_148, plain, (intruder_message(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)|~intruder_message(X2)), inference(spm,[status(thm)],[c_0_110, c_0_122])).
cnf(c_0_149, plain, (b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))))|~fresh_to_b(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_53, c_0_111]), ['final']).
cnf(c_0_150, plain, (b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(encrypt(triple(X1,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))|~intruder_message(X1)|~party_of_protocol(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_102, c_0_126]), c_0_127]), c_0_124]), c_0_41])]), ['final']).
cnf(c_0_151, plain, (message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~intruder_message(encrypt(triple(b,X1,X2),at))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_128, c_0_75]), c_0_93])]), ['final']).
cnf(c_0_152, plain, (b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt))|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1)|~intruder_message(X4)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)|~party_of_protocol(X4)), inference(spm,[status(thm)],[c_0_119, c_0_125]), ['final']).
cnf(c_0_153, plain, (b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(an_a_nonce)),bt))|~intruder_message(X2)|~intruder_message(X1)|~a_key(X1)|~party_of_protocol(X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_119, c_0_129]), c_0_127]), c_0_41])]), ['final']).
cnf(c_0_154, plain, (b_holds(key(X1,a))|~intruder_message(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt))|~intruder_message(X1)|~a_key(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_130, c_0_129])]), ['final']).
cnf(c_0_155, plain, (a_holds(key(X1,b))|~intruder_message(encrypt(quadruple(b,an_a_nonce,X1,X2),at))|~intruder_message(X3)|~intruder_message(X4)), inference(spm,[status(thm)],[c_0_131, c_0_75]), ['final']).
cnf(c_0_156, plain, (intruder_message(X1)|~fresh_intruder_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_115]), ['final']).
cnf(c_0_157, plain, (fresh_intruder_nonce(generate_intruder_nonce(X1))|~fresh_intruder_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_132]), ['final']).
fof(c_0_159, plain, ![X103, X104, X105]:(~intruder_message(encrypt(X103,X104))|~intruder_holds(key(X104,X105))|~party_of_protocol(X105)|intruder_message(X104)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_interception])])).
fof(c_0_161, plain, ![X116]:(~a_key(X116)|~a_nonce(X116)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[nothing_is_a_nonce_and_a_key])])).
fof(c_0_162, plain, ![X114]:~a_nonce(generate_key(X114)), inference(variable_rename,[status(thm)],[c_0_133])).
cnf(c_0_163, plain, (fresh_intruder_nonce(an_intruder_nonce)), inference(split_conjunct,[status(thm)],[an_intruder_nonce_is_a_fresh_intruder_nonce]), ['final']).
fof(c_0_164, plain, ![X115]:(a_nonce(generate_expiration_time(X115))&a_nonce(generate_b_nonce(X115))), inference(variable_rename,[status(thm)],[generated_times_and_nonces_are_nonces])).
cnf(c_0_165, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)),generate_expiration_time(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_134, c_0_135]), ['final']).
cnf(c_0_166, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_68, c_0_136]), ['final']).
cnf(c_0_167, plain, (intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),X2))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_50, c_0_137]), ['final']).
cnf(c_0_168, plain, (intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),X2))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_50, c_0_138]), ['final']).
cnf(c_0_169, plain, (intruder_message(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_61, c_0_121]), ['final']).
cnf(c_0_170, plain, (b_holds(key(generate_key(X1),a))|~intruder_message(generate_key(X1))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_139, c_0_140]), c_0_93]), c_0_124]), c_0_71])]), ['final']).
cnf(c_0_171, plain, (b_holds(key(X1,X2))|~intruder_message(triple(X2,X1,generate_expiration_time(X3)))|~intruder_message(bt)|~intruder_message(X3)|~a_nonce(X3)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(csr,[status(thm)],[inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_139, c_0_103]), c_0_109]), c_0_61]), ['final']).
cnf(c_0_172, plain, (b_holds(key(generate_key(X1),b))|~intruder_message(generate_key(X1))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_139, c_0_141]), c_0_76]), c_0_124]), c_0_44])]), ['final']).
cnf(c_0_173, plain, (intruder_message(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_61, c_0_104]), ['final']).
cnf(c_0_174, plain, (intruder_message(triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),X1))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_50, c_0_99]), ['final']).
cnf(c_0_175, plain, (b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_53, c_0_136]), ['final']).
cnf(c_0_176, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(X2,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)|~intruder_message(X2)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_142, c_0_135]), ['final']).
cnf(c_0_177, plain, (message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~intruder_message(triple(a,X1,X2))|~intruder_message(at)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_143, c_0_103]), ['final']).
cnf(c_0_178, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(a,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_144, c_0_135]), ['final']).
cnf(c_0_179, plain, (b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(triple(X1,generate_key(an_a_nonce),generate_expiration_time(X2)))|~intruder_message(bt)|~intruder_message(X2)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_145, c_0_103]), c_0_61]), ['final']).
cnf(c_0_180, plain, (b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(generate_key(an_a_nonce))|~intruder_message(X1)|~fresh_to_b(generate_key(an_a_nonce))|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_145, c_0_117]), ['final']).
cnf(c_0_181, plain, (b_stored(pair(X1,encrypt(X2,generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(X2,generate_key(an_a_nonce)))|~intruder_message(X2)|~intruder_message(X1)|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_146, c_0_135]), ['final']).
cnf(c_0_182, plain, (b_stored(pair(a,encrypt(X1,generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_147, c_0_135]), ['final']).
cnf(c_0_183, plain, (intruder_message(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_148, c_0_86]), ['final']).
cnf(c_0_184, plain, (b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_149, c_0_135]), ['final']).
cnf(c_0_185, plain, (b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(triple(X1,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)))|~intruder_message(bt)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_150, c_0_103]), c_0_61]), ['final']).
cnf(c_0_186, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(a,X1,X2))|~intruder_message(bt)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_88, c_0_103]), ['final']).
cnf(c_0_187, plain, (message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~intruder_message(triple(b,X1,X2))|~intruder_message(at)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_151, c_0_103]), ['final']).
cnf(c_0_188, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(b,X1,X2))|~intruder_message(bt)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_118, c_0_103]), ['final']).
cnf(c_0_189, plain, (b_holds(key(X1,X2))|~intruder_message(triple(X2,X1,generate_expiration_time(X3)))|~intruder_message(bt)|~intruder_message(X3)|~intruder_message(X4)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)|~party_of_protocol(X4)), inference(csr,[status(thm)],[inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_152, c_0_103]), c_0_109]), c_0_61]), ['final']).
cnf(c_0_190, plain, (b_holds(key(X1,X2))|~intruder_message(X1)|~intruder_message(X2)|~intruder_message(X3)|~a_key(X1)|~fresh_to_b(X1)|~party_of_protocol(X2)|~party_of_protocol(X3)), inference(spm,[status(thm)],[c_0_152, c_0_117]), ['final']).
cnf(c_0_191, plain, (b_holds(key(an_a_nonce,X1))|~intruder_message(X1)|~a_key(an_a_nonce)|~party_of_protocol(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_153, c_0_117]), c_0_127]), c_0_41])]), ['final']).
cnf(c_0_192, plain, (b_holds(key(X1,X2))|~intruder_message(triple(X2,X1,generate_expiration_time(an_a_nonce)))|~intruder_message(bt)|~a_key(X1)|~party_of_protocol(X2)), inference(csr,[status(thm)],[inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_153, c_0_103]), c_0_109]), c_0_61]), ['final']).
cnf(c_0_193, plain, (message(sent(a,b,pair(X1,encrypt(X2,X3))))|~intruder_message(quadruple(b,an_a_nonce,X3,X4))|~intruder_message(at)|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_94, c_0_103]), ['final']).
cnf(c_0_194, plain, (b_holds(key(X1,a))|~intruder_message(triple(a,X1,generate_expiration_time(an_a_nonce)))|~intruder_message(bt)|~a_key(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_154, c_0_103]), c_0_109]), ['final']).
cnf(c_0_195, plain, (b_holds(key(an_a_nonce,a))|~a_key(an_a_nonce)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_154, c_0_89]), c_0_127])]), ['final']).
cnf(c_0_196, plain, (a_holds(key(X1,b))|~intruder_message(quadruple(b,an_a_nonce,X1,X2))|~intruder_message(at)|~intruder_message(X3)|~intruder_message(X4)), inference(spm,[status(thm)],[c_0_155, c_0_103]), ['final']).
cnf(c_0_197, plain, (intruder_message(generate_intruder_nonce(X1))|~fresh_intruder_nonce(X1)), inference(spm,[status(thm)],[c_0_156, c_0_157]), ['final']).
cnf(c_0_199, plain, (intruder_message(X2)|~intruder_message(encrypt(X1,X2))|~intruder_holds(key(X2,X3))|~party_of_protocol(X3)), inference(split_conjunct,[status(thm)],[c_0_159]), ['final']).
cnf(c_0_204, plain, (~a_key(X1)|~a_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_161]), ['final']).
cnf(c_0_205, plain, (~a_nonce(generate_key(X1))), inference(split_conjunct,[status(thm)],[c_0_162]), ['final']).
cnf(c_0_206, plain, (b_holds(key(generate_key(an_a_nonce),b))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_150, c_0_141]), c_0_76]), c_0_44]), c_0_127]), c_0_58]), c_0_41])]), ['final']).
cnf(c_0_207, plain, (intruder_message(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_83, c_0_111]), ['final']).
cnf(c_0_208, plain, (b_holds(key(generate_key(an_a_nonce),a))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_78, c_0_96]), c_0_127]), c_0_93]), c_0_124]), c_0_41]), c_0_71])]), ['final']).
cnf(c_0_209, plain, (a_holds(key(generate_key(an_a_nonce),b))), inference(spm,[status(thm)],[c_0_114, c_0_72]), ['final']).
cnf(c_0_210, plain, (intruder_message(an_intruder_nonce)), inference(spm,[status(thm)],[c_0_156, c_0_163]), ['final']).
cnf(c_0_211, plain, (b_holds(key(bt,t))), inference(split_conjunct,[status(thm)],[b_hold_key_bt_for_t]), ['final']).
cnf(c_0_212, plain, (a_holds(key(at,t))), inference(split_conjunct,[status(thm)],[a_holds_key_at_for_t]), ['final']).
cnf(c_0_213, plain, (a_nonce(generate_expiration_time(X1))), inference(split_conjunct,[status(thm)],[c_0_164]), ['final']).
cnf(c_0_214, plain, (a_nonce(generate_b_nonce(X1))), inference(split_conjunct,[status(thm)],[c_0_164]), ['final']).
# SZS output end Saturation

### Sample solution for BOO001-1

# SZS output start CNFRefutation
cnf(associativity, axiom, (multiply(multiply(X1,X2,X3),X4,multiply(X1,X2,X5))=multiply(X1,X2,multiply(X3,X4,X5))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/BOO001-0.ax', associativity)).
cnf(ternary_multiply_1, axiom, (multiply(X1,X2,X2)=X2), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/BOO001-0.ax', ternary_multiply_1)).
cnf(right_inverse, axiom, (multiply(X1,X2,inverse(X2))=X1), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/BOO001-0.ax', right_inverse)).
cnf(ternary_multiply_2, axiom, (multiply(X1,X1,X2)=X1), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/BOO001-0.ax', ternary_multiply_2)).
cnf(left_inverse, axiom, (multiply(inverse(X1),X1,X2)=X2), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/BOO001-0.ax', left_inverse)).
cnf(prove_inverse_is_self_cancelling, negated_conjecture, (inverse(inverse(a))!=a), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/BOO001-1.p', prove_inverse_is_self_cancelling)).
cnf(c_0_6, axiom, (multiply(multiply(X1,X2,X3),X4,multiply(X1,X2,X5))=multiply(X1,X2,multiply(X3,X4,X5))), associativity).
cnf(c_0_7, axiom, (multiply(X1,X2,X2)=X2), ternary_multiply_1).
cnf(c_0_8, plain, (multiply(multiply(X1,X2,X3),X4,X2)=multiply(X1,X2,multiply(X3,X4,X2))), inference(spm,[status(thm)],[c_0_6, c_0_7])).
cnf(c_0_9, axiom, (multiply(X1,X2,inverse(X2))=X1), right_inverse).
cnf(c_0_10, plain, (multiply(X1,X2,X3)=multiply(X1,X3,multiply(inverse(X3),X2,X3))), inference(spm,[status(thm)],[c_0_8, c_0_9])).
cnf(c_0_11, axiom, (multiply(X1,X1,X2)=X1), ternary_multiply_2).
cnf(c_0_12, axiom, (multiply(inverse(X1),X1,X2)=X2), left_inverse).
cnf(c_0_13, plain, (multiply(X1,inverse(X2),X2)=X1), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_10, c_0_11]), c_0_9])).
cnf(c_0_14, negated_conjecture, (inverse(inverse(a))!=a), prove_inverse_is_self_cancelling).
cnf(c_0_15, plain, (inverse(inverse(X1))=X1), inference(spm,[status(thm)],[c_0_12, c_0_13])).
cnf(c_0_16, negated_conjecture, ($false), inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_14, c_0_15])]), ['proof']). # SZS output end CNFRefutation ## GKC 0.8 Tanel Tammet Tallinn University of Technology, Estonia ### Sample solution for SEU140+2 % SZS status Theorem for /opt/TPTP/Problems/SEU/SEU140+2.p % SZS output start CNFRefutation for /opt/TPTP/Problems/SEU/SEU140+2.p fof('t3_xboole_0_$sk', plain, ((~disjoint(X2,X1) | (~in(X3,X1) | ~in(X3,X2))) &
((in($sk5(X4,X5),X5) & in($sk5(X4,X5),X4)) | disjoint(X4,X5))),
inference(negpush_and_skolemize,[],['t3_xboole_0'])).
fof('t3_xboole_0', lemma, (! [A,B] : (~(~disjoint(A,B) & (! [C] : ~(in(C,A) &
in(C,B)))) & ~((? [C] : (in(C,A) & in(C,B))) & disjoint(A,B)))),
input).
fof('symmetry_r1_xboole_0_$sk', plain, (disjoint(X2,X1) | ~disjoint(X1,X2)), inference(negpush_and_skolemize,[],['symmetry_r1_xboole_0'])). fof('symmetry_r1_xboole_0', axiom, (! [A,B] : (disjoint(A,B) => disjoint(B,A))), input). fof('t63_xboole_1_$sk', plain, (~disjoint($sk3,$sk2) & (disjoint($sk1,$sk2) &
subset($sk3,$sk1))),
inference(negpush_and_skolemize,[],['t63_xboole_1'])).
fof('t63_xboole_1', conjecture, (! [A,B,C] : ((subset(A,B) & disjoint(B,C)) =>
disjoint(A,C))),
input).
fof('d3_tarski_$sk', plain, ((~subset(X2,X1) | (in(X3,X1) | ~in(X3,X2))) & (subset(X5,X4) | (~in($sk14(X4,X5),X4) & in($sk14(X4,X5),X5)))), inference(negpush_and_skolemize,[],['d3_tarski'])). fof('d3_tarski', axiom, (! [A,B] : (subset(A,B) <=> (! [C] : (in(C,A) => in(C,B))))), input). cnf('1', plain, (~disjoint(X,Y) | ~in(Z,Y) | ~in(Z,X)), inference(cnf_transformation,[],['t3_xboole_0_$sk'])).
cnf('2', plain, (~disjoint(X,Y) | disjoint(Y,X)),
inference(cnf_transformation,[],['symmetry_r1_xboole_0_$sk'])). cnf('3', plain, (disjoint($sk1,$sk2)), inference(cnf_transformation,[],['t63_xboole_1_$sk'])).
cnf('4', plain, (disjoint($sk2,$sk1)),
inference(resolution,[],['2','3'])).
cnf('5', plain, (~in(X,$sk1) | ~in(X,$sk2)),
inference(resolution,[],['1','4'])).
cnf('6', plain, (~subset(X,Y) | ~in(Z,X) | in(Z,Y)),
inference(cnf_transformation,[],['d3_tarski_$sk'])). cnf('7', plain, (subset($sk3,$sk1)), inference(cnf_transformation,[],['t63_xboole_1_$sk'])).
cnf('8', plain, (~in(X,$sk3) | in(X,$sk1)),
inference(resolution,[],['6','7'])).
cnf('9', plain, (in($sk5(X,Y),Y) | disjoint(X,Y)), inference(cnf_transformation,[],['t3_xboole_0_$sk'])).
cnf('10', plain, (in($sk5(X,$sk3),$sk1) | disjoint(X,$sk3)),
inference(resolution,[],['8','9'])).
cnf('11', plain, (~in($sk5(X,$sk3),$sk2) | disjoint(X,$sk3)),
inference(resolution,[],['5','10'])).
cnf('12', plain, (in($sk5(X,Y),X) | disjoint(X,Y)), inference(cnf_transformation,[],['t3_xboole_0_$sk'])).
cnf('13', plain, (disjoint($sk2,$sk3)),
inference(resolution,[],['11','12'])).
cnf('14', plain, (~disjoint($sk3,$sk2)),
inference(cnf_transformation,[],['t63_xboole_1_$sk'])). cnf('15', plain, ($false),
inference(resolution,[then_simplify],['13','2','14'])).

% SZS output end CNFRefutation for /opt/TPTP/Problems/SEU/SEU140+2.p

### Sample solution for BOO001-1

% SZS status Unsatisfiable for /opt/TPTP/Problems/BOO/BOO001-1.p

% SZS output start CNFRefutation for /opt/TPTP/Problems/BOO/BOO001-1.p
cnf('1', plain, (multiply(X,Y,inverse(Y)) = X),
inference(cnf_transformation,[],['$inc_right_inverse'])). cnf('2', plain, (multiply(X,Y,Y) = Y), inference(cnf_transformation,[],['$inc_ternary_multiply_1'])).
cnf('3', plain, (multiply(multiply(X,Y,Z),U,multiply(X,Y,V)) =
multiply(X,Y,multiply(Z,U,V))),
inference(cnf_transformation,[],['$inc_associativity'])). cnf('4', plain, (multiply(X,Y,multiply(Z,X,U)) = multiply(Z,X,multiply(X,Y,U))), inference(paramodulation,[],['2','3'])). cnf('5', plain, (multiply(X,X,Y) = X), inference(cnf_transformation,[],['$inc_ternary_multiply_2'])).
cnf('6', plain, (multiply(X,Y,multiply(Z,multiply(X,Y,Z),U)) = multiply(X,Y,Z)),
inference(paramodulation,[],['3','5'])).
cnf('7', plain, (multiply(X3,Y3,multiply(inverse(Y3),X3,Z3)) =
multiply(X3,Y3,inverse(Y3))),
inference(paramodulation,[],['1','6'])).
cnf('8', plain, (multiply(X,Y,multiply(inverse(Y),X,Z)) = X),
inference(simplify,[],['7','1'])).
cnf('9', plain, (multiply(inverse(X),Y,multiply(Y,X,Z)) = Y),
inference(paramodulation,[],['4','8'])).
cnf('10', plain, (multiply(inverse(X),Y,X) = Y),
inference(paramodulation,[],['2','9'])).
cnf('11', plain, (inverse(inverse(a)) != a),
inference(cnf_transformation,[],['prove_inverse_is_self_cancelling'])).
cnf('12', plain, ($false), inference(paramodulation,[then_simplify],['1','10','11'])). % SZS output end CNFRefutation for /opt/TPTP/Problems/BOO/BOO001-1.p ## iProver 3.8 Konstantin Korovin University of Manchester, United Kingdom ### Sample solution for DAT013_1 % SZS output start CNFRefutation for DAT013_1.p tff(f3,conjecture,( ! [X0 : array,X1 :$int,X2 : $int] : (! [X3 :$int] : (($lesseq(X3,X2) &$lesseq(X1,X3)) => $greater(read(X0,X3),0)) => ! [X4 :$int] : (($lesseq(X4,X2) &$lesseq($sum(X1,3),X4)) =>$greater(read(X0,X4),0)))),
file('/shareddata/TPTP-v8.1.2/Problems/DAT/DAT013_1.p',co1)).

tff(f4,negated_conjecture,(
~! [X0 : array,X1 : $int,X2 :$int] : (! [X3 : $int] : (($lesseq(X3,X2) & $lesseq(X1,X3)) =>$greater(read(X0,X3),0)) => ! [X4 : $int] : (($lesseq(X4,X2) & $lesseq($sum(X1,3),X4)) => $greater(read(X0,X4),0)))), inference(negated_conjecture,[],[f3])). tff(f5,plain,( ~! [X0 : array,X1 :$int,X2 : $int] : (! [X3 :$int] : ((~$less(X2,X3) & ~$less(X3,X1)) => $less(0,read(X0,X3))) => ! [X4 :$int] : ((~$less(X2,X4) & ~$less(X4,$sum(X1,3))) =>$less(0,read(X0,X4))))),
inference(theory_normalization,[],[f4])).

tff(f12,plain,(
( ! [X2 : $int,X0 :$int,X1 : $int] : (~$less(X0,X1) | ~$less(X1,X2) |$less(X0,X2)) )),
introduced(theory_axiom_146,[])).

tff(f13,plain,(
( ! [X0 : $int,X1 :$int] : ($less(X0,X1) |$less(X1,X0) | X0 = X1) )),
introduced(theory_axiom_147,[])).

tff(f19,plain,(
? [X0 : array,X1 : $int,X2 :$int] : (? [X4 : $int] : (~$less(0,read(X0,X4)) & (~$less(X2,X4) & ~$less(X4,$sum(X1,3)))) & ! [X3 :$int] : ($less(0,read(X0,X3)) | ($less(X2,X3) | $less(X3,X1))))), inference(ennf_transformation,[],[f5])). tff(f20,plain,( ? [X0 : array,X1 :$int,X2 : $int] : (? [X4 :$int] : (~$less(0,read(X0,X4)) & ~$less(X2,X4) & ~$less(X4,$sum(X1,3))) & ! [X3 : $int] : ($less(0,read(X0,X3)) | $less(X2,X3) |$less(X3,X1)))),
inference(flattening,[],[f19])).

tff(f21,plain,(
? [X0 : array,X1 : $int,X2 :$int] : (? [X3 : $int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) & ! [X4 :$int] : ($less(0,read(X0,X4)) |$less(X2,X4) | $less(X4,X1)))), inference(rectify,[],[f20])). tff(f22,plain,( ? [X0 : array,X1 :$int,X2 : $int] : (? [X3 :$int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) & ! [X4 : $int] : ($less(0,read(X0,X4)) | $less(X2,X4) |$less(X4,X1))) => (? [X3 : $int] : (~$less(0,read(sK0,X3)) & ~$less(sK2,X3) & ~$less(X3,$sum(sK1,3))) & ! [X4 :$int] : ($less(0,read(sK0,X4)) |$less(sK2,X4) | $less(X4,sK1)))), introduced(choice_axiom,[])). tff(f23,plain,( ? [X3 :$int] : (~$less(0,read(sK0,X3)) & ~$less(sK2,X3) & ~$less(X3,$sum(sK1,3))) => (~$less(0,read(sK0,sK3)) & ~$less(sK2,sK3) & ~$less(sK3,$sum(sK1,3)))),
introduced(choice_axiom,[])).

tff(f24,plain,(
(~$less(0,read(sK0,sK3)) & ~$less(sK2,sK3) & ~$less(sK3,$sum(sK1,3))) & ! [X4 : $int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) |$less(X4,sK1))),
inference(skolemisation,[status(esa),new_symbols(skolem,[sK0,sK1,sK2,sK3])],[f21,f23,f22])).

tff(f27,plain,(
( ! [X4 : $int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) |$less(X4,sK1)) )),
inference(cnf_transformation,[],[f24])).

tff(f28,plain,(
~$less(sK3,$sum(sK1,3))),
inference(cnf_transformation,[],[f24])).

tff(f29,plain,(
~$less(sK2,sK3)), inference(cnf_transformation,[],[f24])). tff(f30,plain,( ~$less(0,read(sK0,sK3))),
inference(cnf_transformation,[],[f24])).

cnf(c_53,plain,
(X0_3 = X1_3|$less_int(X0_3,X1_3)|$less_int(X1_3,X0_3)),
inference(cnf_transformation,[],[f13])).

cnf(c_54,plain,
(~$less_int(X0_3,X1_3)|~$less_int(X1_3,X2_3)|$less_int(X0_3,X2_3)), inference(cnf_transformation,[],[f12])). cnf(c_63,negated_conjecture, (~$less_int(0,read(sK0,sK3))),
inference(cnf_transformation,[],[f30])).

cnf(c_64,negated_conjecture,
(~$less_int(sK2,sK3)), inference(cnf_transformation,[],[f29])). cnf(c_65,negated_conjecture, (~$less_int(sK3,$sum_int(sK1,3))), inference(cnf_transformation,[],[f28])). cnf(c_66,negated_conjecture, ($less_int(0,read(sK0,X0_3))|$less_int(X0_3,sK1)|$less_int(sK2,X0_3)),
inference(cnf_transformation,[],[f27])).

cnf(c_497,plain,
($less_int(sK2,sK3)|$less_int(sK3,sK1)),
inference(superposition,[status(thm)],[c_66,c_63])).

cnf(c_498,plain,
($less_int(sK3,sK1)), inference(forward_subsumption_resolution,[status(thm)],[c_497,c_64])). cnf(c_622,plain, (~$less_int(sK1,X0_3)|$less_int(sK3,X0_3)), inference(superposition,[status(thm)],[c_498,c_54])). cnf(c_876,plain, (X0_3 = sK1|$less_int(X0_3,sK1)|$less_int(sK3,X0_3)), inference(superposition,[status(thm)],[c_53,c_622])). cnf(c_1544,plain, ($sum_int(sK1,3) = sK1|$less_int($sum_int(sK1,3),sK1)),
inference(superposition,[status(thm)],[c_876,c_65])).

cnf(c_1587,plain,
($false), inference(smt_theory_normalisation,[status(thm)],[c_1544])). % SZS output end CNFRefutation for DAT013_1.p ### Sample solution for HWV042_1 % SZS status Satisfiable for HWV042_1.p ------ Building Model...Done %------ The model is defined over ground terms (initial term algebra). %------ Predicates are defined as (\forall x_1,..,x_n ((~)P(x_1,..,x_n) <=> (\phi(x_1,..,x_n)))) %------ where \phi is a formula over the term algebra. %------ If we have equality in the problem then it is also defined as a predicate above, %------ with "=" on the right-hand-side of the definition interpreted over the term algebra term_algebra_type %------ See help for --sat_out_model for different model outputs. %------ equality_sorted(X0,X1,X2) can be used in the place of usual "=" %------ where the first argument stands for the sort ($i in the unsorted case)
% SZS output start Model for HWV042_1.p

%------ Positive definition of equality_sorted
fof(lit_def,axiom,
(! [X0_12,X0_13,X1_13] :
( equality_sorted(X0_12,X0_13,X1_13) <=>
(
(
( X0_12=$o & X1_1=X0_1 ) ) | ( ( X0_12=state_type ) & ( X0_13!=constB200 ) & ( X0_13!=constB199 ) & ( X0_13!=constB198 ) & ( X0_13!=constB197 ) & ( X0_13!=constB196 ) & ( X0_13!=constB195 ) & ( X0_13!=constB194 ) & ( X0_13!=constB193 ) & ( X0_13!=constB192 ) & ( X0_13!=constB191 ) & ( X0_13!=constB190 ) & ( X0_13!=constB189 ) & ( X0_13!=constB188 ) & ( X0_13!=constB187 ) & ( X0_13!=constB186 ) & ( X0_13!=constB185 ) & ( X0_13!=constB184 ) & ( X0_13!=constB183 ) & ( X0_13!=constB182 ) & ( X0_13!=constB181 ) & ( X0_13!=constB180 ) & ( X0_13!=constB179 ) & ( X0_13!=constB178 ) & ( X0_13!=constB177 ) & ( X0_13!=constB176 ) & ( X0_13!=constB175 ) & ( X0_13!=constB174 ) & ( X0_13!=constB173 ) & ( X0_13!=constB172 ) & ( X0_13!=constB171 ) & ( X0_13!=constB170 ) & ( X0_13!=constB169 ) & ( X0_13!=constB168 ) & ( X0_13!=constB167 ) & ( X0_13!=constB166 ) & ( X0_13!=constB165 ) & ( X0_13!=constB164 ) & ( X0_13!=constB163 ) & ( X0_13!=constB162 ) & ( X0_13!=constB161 ) & ( X0_13!=constB160 ) & ( X0_13!=constB159 ) & ( X0_13!=constB158 ) & ( X0_13!=constB157 ) & ( X0_13!=constB156 ) & ( X0_13!=constB155 ) & ( X0_13!=constB154 ) & ( X0_13!=constB153 ) & ( X0_13!=constB152 ) & ( X0_13!=constB151 ) & ( X0_13!=constB150 ) & ( X0_13!=constB149 ) & ( X0_13!=constB148 ) & ( X0_13!=constB147 ) & ( X0_13!=constB146 ) & ( X0_13!=constB145 ) & ( X0_13!=constB144 ) & ( X0_13!=constB143 ) & ( X0_13!=constB142 ) & ( X0_13!=constB141 ) & ( X0_13!=constB140 ) & ( X0_13!=constB139 ) & ( X0_13!=constB138 ) & ( X0_13!=constB137 ) & ( X0_13!=constB136 ) & ( X0_13!=constB135 ) & ( X0_13!=constB134 ) & ( X0_13!=constB133 ) & ( X0_13!=constB132 ) & ( X0_13!=constB131 ) & ( X0_13!=constB130 ) & ( X0_13!=constB129 ) & ( X0_13!=constB128 ) & ( X0_13!=constB127 ) & ( X0_13!=constB126 ) & ( X0_13!=constB125 ) & ( X0_13!=constB124 ) & ( X0_13!=constB123 ) & ( X0_13!=constB122 ) & ( X0_13!=constB121 ) & ( X0_13!=constB120 ) & ( X0_13!=constB119 ) & ( X0_13!=constB118 ) & ( X0_13!=constB117 ) & ( X0_13!=constB116 ) & ( X0_13!=constB115 ) & ( X0_13!=constB114 ) & ( X0_13!=constB113 ) & ( X0_13!=constB112 ) & ( X0_13!=constB111 ) & ( X0_13!=constB110 ) & ( X0_13!=constB109 ) & ( X0_13!=constB108 ) & ( X0_13!=constB107 ) & ( X0_13!=constB106 ) & ( X0_13!=constB105 ) & ( X0_13!=constB104 ) & ( X0_13!=constB103 ) & ( X0_13!=constB102 ) & ( X0_13!=constB101 ) & ( X0_13!=constB100 ) & ( X0_13!=constB99 ) & ( X0_13!=constB98 ) & ( X0_13!=constB97 ) & ( X0_13!=constB96 ) & ( X0_13!=constB95 ) & ( X0_13!=constB94 ) & ( X0_13!=constB93 ) & ( X0_13!=constB92 ) & ( X0_13!=constB91 ) & ( X0_13!=constB90 ) & ( X0_13!=constB89 ) & ( X0_13!=constB88 ) & ( X0_13!=constB87 ) & ( X0_13!=constB86 ) & ( X0_13!=constB85 ) & ( X0_13!=constB84 ) & ( X0_13!=constB83 ) & ( X0_13!=constB82 ) & ( X0_13!=constB81 ) & ( X0_13!=constB80 ) & ( X0_13!=constB79 ) & ( X0_13!=constB78 ) & ( X0_13!=constB77 ) & ( X0_13!=constB76 ) & ( X0_13!=constB75 ) & ( X0_13!=constB74 ) & ( X0_13!=constB73 ) & ( X0_13!=constB72 ) & ( X0_13!=constB71 ) & ( X0_13!=constB70 ) & ( X0_13!=constB69 ) & ( X0_13!=constB68 ) & ( X0_13!=constB67 ) & ( X0_13!=constB66 ) & ( X0_13!=constB65 ) & ( X0_13!=constB64 ) & ( X0_13!=constB63 ) & ( X0_13!=constB62 ) & ( X0_13!=constB61 ) & ( X0_13!=constB60 ) & ( X0_13!=constB59 ) & ( X0_13!=constB58 ) & ( X0_13!=constB57 ) & ( X0_13!=constB56 ) & ( X0_13!=constB55 ) & ( X0_13!=constB54 ) & ( X0_13!=constB53 ) & ( X0_13!=constB52 ) & ( X0_13!=constB51 ) & ( X0_13!=constB50 ) & ( X0_13!=constB49 ) & ( X0_13!=constB48 ) & ( X0_13!=constB47 ) & ( X0_13!=constB46 ) & ( X0_13!=constB45 ) & ( X0_13!=constB44 ) & ( X0_13!=constB43 ) & ( X0_13!=constB42 ) & ( X0_13!=constB41 ) & ( X0_13!=constB40 ) & ( X0_13!=constB39 ) & ( X0_13!=constB38 ) & ( X0_13!=constB37 ) & ( X0_13!=constB36 ) & ( X0_13!=constB35 ) & ( X0_13!=constB34 ) & ( X0_13!=constB33 ) & ( X0_13!=constB32 ) & ( X0_13!=constB31 ) & ( X0_13!=constB30 ) & ( X0_13!=constB29 ) & ( X0_13!=constB28 ) & ( X0_13!=constB27 ) & ( X0_13!=constB26 ) & ( X0_13!=constB25 ) & ( X0_13!=constB24 ) & ( X0_13!=constB23 ) & ( X0_13!=constB22 ) & ( X0_13!=constB21 ) & ( X0_13!=constB20 ) & ( X0_13!=constB19 ) & ( X0_13!=constB18 ) & ( X0_13!=constB17 ) & ( X0_13!=constB16 ) & ( X0_13!=constB15 ) & ( X0_13!=constB14 ) & ( X0_13!=constB13 ) & ( X0_13!=constB12 ) & ( X0_13!=constB11 ) & ( X0_13!=constB10 ) & ( X0_13!=constB9 ) & ( X0_13!=constB8 ) & ( X0_13!=constB7 ) & ( X0_13!=constB6 ) & ( X0_13!=constB5 ) & ( X0_13!=constB4 ) & ( X0_13!=constB3 ) & ( X0_13!=constB2 ) & ( X0_13!=constB1 ) & ( X0_13!=constB0 | X1_13!=sK0 ) & ( X0_13!=sK0 ) & ( X0_13!=sK0 | X1_13!=constB0 ) & ( X1_13!=constB200 ) & ( X1_13!=constB199 ) & ( X1_13!=constB198 ) & ( X1_13!=constB197 ) & ( X1_13!=constB196 ) & ( X1_13!=constB195 ) & ( X1_13!=constB194 ) & ( X1_13!=constB193 ) & ( X1_13!=constB192 ) & ( X1_13!=constB191 ) & ( X1_13!=constB190 ) & ( X1_13!=constB189 ) & ( X1_13!=constB188 ) & ( X1_13!=constB187 ) & ( X1_13!=constB186 ) & ( X1_13!=constB185 ) & ( X1_13!=constB184 ) & ( X1_13!=constB183 ) & ( X1_13!=constB182 ) & ( X1_13!=constB181 ) & ( X1_13!=constB180 ) & ( X1_13!=constB179 ) & ( X1_13!=constB178 ) & ( X1_13!=constB177 ) & ( X1_13!=constB176 ) & ( X1_13!=constB175 ) & ( X1_13!=constB174 ) & ( X1_13!=constB173 ) & ( X1_13!=constB172 ) & ( X1_13!=constB171 ) & ( X1_13!=constB170 ) & ( X1_13!=constB169 ) & ( X1_13!=constB168 ) & ( X1_13!=constB167 ) & ( X1_13!=constB166 ) & ( X1_13!=constB165 ) & ( X1_13!=constB164 ) & ( X1_13!=constB163 ) & ( X1_13!=constB162 ) & ( X1_13!=constB161 ) & ( X1_13!=constB160 ) & ( X1_13!=constB159 ) & ( X1_13!=constB158 ) & ( X1_13!=constB157 ) & ( X1_13!=constB156 ) & ( X1_13!=constB155 ) & ( X1_13!=constB154 ) & ( X1_13!=constB153 ) & ( X1_13!=constB152 ) & ( X1_13!=constB151 ) & ( X1_13!=constB150 ) & ( X1_13!=constB149 ) & ( X1_13!=constB148 ) & ( X1_13!=constB147 ) & ( X1_13!=constB146 ) & ( X1_13!=constB145 ) & ( X1_13!=constB144 ) & ( X1_13!=constB143 ) & ( X1_13!=constB142 ) & ( X1_13!=constB141 ) & ( X1_13!=constB140 ) & ( X1_13!=constB139 ) & ( X1_13!=constB138 ) & ( X1_13!=constB137 ) & ( X1_13!=constB136 ) & ( X1_13!=constB135 ) & ( X1_13!=constB134 ) & ( X1_13!=constB133 ) & ( X1_13!=constB132 ) & ( X1_13!=constB131 ) & ( X1_13!=constB130 ) & ( X1_13!=constB129 ) & ( X1_13!=constB128 ) & ( X1_13!=constB127 ) & ( X1_13!=constB126 ) & ( X1_13!=constB125 ) & ( X1_13!=constB124 ) & ( X1_13!=constB123 ) & ( X1_13!=constB122 ) & ( X1_13!=constB121 ) & ( X1_13!=constB120 ) & ( X1_13!=constB119 ) & ( X1_13!=constB118 ) & ( X1_13!=constB117 ) & ( X1_13!=constB116 ) & ( X1_13!=constB115 ) & ( X1_13!=constB114 ) & ( X1_13!=constB113 ) & ( X1_13!=constB112 ) & ( X1_13!=constB111 ) & ( X1_13!=constB110 ) & ( X1_13!=constB109 ) & ( X1_13!=constB108 ) & ( X1_13!=constB107 ) & ( X1_13!=constB106 ) & ( X1_13!=constB105 ) & ( X1_13!=constB104 ) & ( X1_13!=constB103 ) & ( X1_13!=constB102 ) & ( X1_13!=constB101 ) & ( X1_13!=constB100 ) & ( X1_13!=constB99 ) & ( X1_13!=constB98 ) & ( X1_13!=constB97 ) & ( X1_13!=constB96 ) & ( X1_13!=constB95 ) & ( X1_13!=constB94 ) & ( X1_13!=constB93 ) & ( X1_13!=constB92 ) & ( X1_13!=constB91 ) & ( X1_13!=constB90 ) & ( X1_13!=constB89 ) & ( X1_13!=constB88 ) & ( X1_13!=constB87 ) & ( X1_13!=constB86 ) & ( X1_13!=constB85 ) & ( X1_13!=constB84 ) & ( X1_13!=constB83 ) & ( X1_13!=constB82 ) & ( X1_13!=constB81 ) & ( X1_13!=constB80 ) & ( X1_13!=constB79 ) & ( X1_13!=constB78 ) & ( X1_13!=constB77 ) & ( X1_13!=constB76 ) & ( X1_13!=constB75 ) & ( X1_13!=constB74 ) & ( X1_13!=constB73 ) & ( X1_13!=constB72 ) & ( X1_13!=constB71 ) & ( X1_13!=constB70 ) & ( X1_13!=constB69 ) & ( X1_13!=constB68 ) & ( X1_13!=constB67 ) & ( X1_13!=constB66 ) & ( X1_13!=constB65 ) & ( X1_13!=constB64 ) & ( X1_13!=constB63 ) & ( X1_13!=constB62 ) & ( X1_13!=constB61 ) & ( X1_13!=constB60 ) & ( X1_13!=constB59 ) & ( X1_13!=constB58 ) & ( X1_13!=constB57 ) & ( X1_13!=constB56 ) & ( X1_13!=constB55 ) & ( X1_13!=constB54 ) & ( X1_13!=constB53 ) & ( X1_13!=constB52 ) & ( X1_13!=constB51 ) & ( X1_13!=constB50 ) & ( X1_13!=constB49 ) & ( X1_13!=constB48 ) & ( X1_13!=constB47 ) & ( X1_13!=constB46 ) & ( X1_13!=constB45 ) & ( X1_13!=constB44 ) & ( X1_13!=constB43 ) & ( X1_13!=constB42 ) & ( X1_13!=constB41 ) & ( X1_13!=constB40 ) & ( X1_13!=constB39 ) & ( X1_13!=constB38 ) & ( X1_13!=constB37 ) & ( X1_13!=constB36 ) & ( X1_13!=constB35 ) & ( X1_13!=constB34 ) & ( X1_13!=constB33 ) & ( X1_13!=constB32 ) & ( X1_13!=constB31 ) & ( X1_13!=constB30 ) & ( X1_13!=constB29 ) & ( X1_13!=constB28 ) & ( X1_13!=constB27 ) & ( X1_13!=constB26 ) & ( X1_13!=constB25 ) & ( X1_13!=constB24 ) & ( X1_13!=constB23 ) & ( X1_13!=constB22 ) & ( X1_13!=constB21 ) & ( X1_13!=constB20 ) & ( X1_13!=constB19 ) & ( X1_13!=constB18 ) & ( X1_13!=constB17 ) & ( X1_13!=constB16 ) & ( X1_13!=constB15 ) & ( X1_13!=constB14 ) & ( X1_13!=constB13 ) & ( X1_13!=constB12 ) & ( X1_13!=constB11 ) & ( X1_13!=constB10 ) & ( X1_13!=constB9 ) & ( X1_13!=constB8 ) & ( X1_13!=constB7 ) & ( X1_13!=constB6 ) & ( X1_13!=constB5 ) & ( X1_13!=constB4 ) & ( X1_13!=constB3 ) & ( X1_13!=constB2 ) & ( X1_13!=constB1 ) & ( X1_13!=sK0 ) ) | ( ( X0_12=state_type & X0_13=constB200 & X1_13=constB200 ) ) | ( ( X0_12=state_type & X0_13=constB199 & X1_13=constB199 ) ) | ( ( X0_12=state_type & X0_13=constB198 & X1_13=constB198 ) ) | ( ( X0_12=state_type & X0_13=constB197 & X1_13=constB197 ) ) | ( ( X0_12=state_type & X0_13=constB196 & X1_13=constB196 ) ) | ( ( X0_12=state_type & X0_13=constB195 & X1_13=constB195 ) ) | ( ( X0_12=state_type & X0_13=constB194 & X1_13=constB194 ) ) | ( ( X0_12=state_type & X0_13=constB193 & X1_13=constB193 ) ) | ( ( X0_12=state_type & X0_13=constB192 & X1_13=constB192 ) ) | ( ( X0_12=state_type & X0_13=constB191 & X1_13=constB191 ) ) | ( ( X0_12=state_type & X0_13=constB190 & X1_13=constB190 ) ) | ( ( X0_12=state_type & X0_13=constB189 & X1_13=constB189 ) ) | ( ( X0_12=state_type & X0_13=constB188 & X1_13=constB188 ) ) | ( ( X0_12=state_type & X0_13=constB187 & X1_13=constB187 ) ) | ( ( X0_12=state_type & X0_13=constB186 & X1_13=constB186 ) ) | ( ( X0_12=state_type & X0_13=constB185 & X1_13=constB185 ) ) | ( ( X0_12=state_type & X0_13=constB185 & X1_13=sK0 ) ) | ( ( X0_12=state_type & X0_13=constB184 & X1_13=constB184 ) ) | ( ( X0_12=state_type & X0_13=constB183 & X1_13=constB183 ) ) | ( ( X0_12=state_type & X0_13=constB182 & X1_13=constB182 ) ) | ( ( X0_12=state_type & X0_13=constB181 & X1_13=constB181 ) ) | ( ( X0_12=state_type & X0_13=constB180 & X1_13=constB180 ) ) | ( ( X0_12=state_type & X0_13=constB179 & X1_13=constB179 ) ) | ( ( X0_12=state_type & X0_13=constB178 & X1_13=constB178 ) ) | ( ( X0_12=state_type & X0_13=constB177 & X1_13=constB177 ) ) | ( ( X0_12=state_type & X0_13=constB176 & X1_13=constB176 ) ) | ( ( X0_12=state_type & X0_13=constB175 & X1_13=constB175 ) ) | ( ( X0_12=state_type & X0_13=constB174 & X1_13=constB174 ) ) | ( ( X0_12=state_type & X0_13=constB173 & X1_13=constB173 ) ) | ( ( X0_12=state_type & X0_13=constB172 & X1_13=constB172 ) ) | ( ( X0_12=state_type & X0_13=constB171 & X1_13=constB171 ) ) | ( ( X0_12=state_type & X0_13=constB170 & X1_13=constB170 ) ) | ( ( X0_12=state_type & X0_13=constB169 & X1_13=constB169 ) ) | ( ( X0_12=state_type & X0_13=constB168 & X1_13=constB168 ) ) | ( ( X0_12=state_type & X0_13=constB167 & X1_13=constB167 ) ) | ( ( X0_12=state_type & X0_13=constB166 & X1_13=constB166 ) ) | ( ( X0_12=state_type & X0_13=constB165 & X1_13=constB165 ) ) | ( ( X0_12=state_type & X0_13=constB164 & X1_13=constB164 ) ) | ( ( X0_12=state_type & X0_13=constB163 & X1_13=constB163 ) ) | ( ( X0_12=state_type & X0_13=constB162 & X1_13=constB162 ) ) | ( ( X0_12=state_type & X0_13=constB161 & X1_13=constB161 ) ) | ( ( X0_12=state_type & X0_13=constB160 & X1_13=constB160 ) ) | ( ( X0_12=state_type & X0_13=constB159 & X1_13=constB159 ) ) | ( ( X0_12=state_type & X0_13=constB158 & X1_13=constB158 ) ) | ( ( X0_12=state_type & X0_13=constB157 & X1_13=constB157 ) ) | ( ( X0_12=state_type & X0_13=constB156 & X1_13=constB156 ) ) | ( ( X0_12=state_type & X0_13=constB155 & X1_13=constB155 ) ) | ( ( X0_12=state_type & X0_13=constB154 & X1_13=constB154 ) ) | ( ( X0_12=state_type & X0_13=constB153 & X1_13=constB153 ) ) | ( ( X0_12=state_type & X0_13=constB152 & X1_13=constB152 ) ) | ( ( X0_12=state_type & X0_13=constB151 & X1_13=constB151 ) ) | ( ( X0_12=state_type & X0_13=constB150 & X1_13=constB150 ) ) | ( ( X0_12=state_type & X0_13=constB149 & X1_13=constB149 ) ) | ( ( X0_12=state_type & X0_13=constB148 & X1_13=constB148 ) ) | ( ( X0_12=state_type & X0_13=constB147 & X1_13=constB147 ) ) | ( ( X0_12=state_type & X0_13=constB146 & X1_13=constB146 ) ) | ( ( X0_12=state_type & X0_13=constB145 & X1_13=constB145 ) ) | ( ( X0_12=state_type & X0_13=constB144 & X1_13=constB144 ) ) | ( ( X0_12=state_type & X0_13=constB143 & X1_13=constB143 ) ) | ( ( X0_12=state_type & X0_13=constB142 & X1_13=constB142 ) ) | ( ( X0_12=state_type & X0_13=constB141 & X1_13=constB141 ) ) | ( ( X0_12=state_type & X0_13=constB140 & X1_13=constB140 ) ) | ( ( X0_12=state_type & X0_13=constB139 & X1_13=constB139 ) ) | ( ( X0_12=state_type & X0_13=constB138 & X1_13=constB138 ) ) | ( ( X0_12=state_type & X0_13=constB137 & X1_13=constB137 ) ) | ( ( X0_12=state_type & X0_13=constB136 & X1_13=constB136 ) ) | ( ( X0_12=state_type & X0_13=constB135 & X1_13=constB135 ) ) | ( ( X0_12=state_type & X0_13=constB134 & X1_13=constB134 ) ) | ( ( X0_12=state_type & X0_13=constB133 & X1_13=constB133 ) ) | ( ( X0_12=state_type & X0_13=constB132 & X1_13=constB132 ) ) | ( ( X0_12=state_type & X0_13=constB131 & X1_13=constB131 ) ) | ( ( X0_12=state_type & X0_13=constB130 & X1_13=constB130 ) ) | ( ( X0_12=state_type & X0_13=constB129 & X1_13=constB129 ) ) | ( ( X0_12=state_type & X0_13=constB128 & X1_13=constB128 ) ) | ( ( X0_12=state_type & X0_13=constB127 & X1_13=constB127 ) ) | ( ( X0_12=state_type & X0_13=constB126 & X1_13=constB126 ) ) | ( ( X0_12=state_type & X0_13=constB125 & X1_13=constB125 ) ) | ( ( X0_12=state_type & X0_13=constB124 & X1_13=constB124 ) ) | ( ( X0_12=state_type & X0_13=constB123 & X1_13=constB123 ) ) | ( ( X0_12=state_type & X0_13=constB122 & X1_13=constB122 ) ) | ( ( X0_12=state_type & X0_13=constB121 & X1_13=constB121 ) ) | ( ( X0_12=state_type & X0_13=constB120 & X1_13=constB120 ) ) | ( ( X0_12=state_type & X0_13=constB119 & X1_13=constB119 ) ) | ( ( X0_12=state_type & X0_13=constB118 & X1_13=constB118 ) ) | ( ( X0_12=state_type & X0_13=constB117 & X1_13=constB117 ) ) | ( ( X0_12=state_type & X0_13=constB116 & X1_13=constB116 ) ) | ( ( X0_12=state_type & X0_13=constB115 & X1_13=constB115 ) ) | ( ( X0_12=state_type & X0_13=constB114 & X1_13=constB114 ) ) | ( ( X0_12=state_type & X0_13=constB113 & X1_13=constB113 ) ) | ( ( X0_12=state_type & X0_13=constB112 & X1_13=constB112 ) ) | ( ( X0_12=state_type & X0_13=constB111 & X1_13=constB111 ) ) | ( ( X0_12=state_type & X0_13=constB110 & X1_13=constB110 ) ) | ( ( X0_12=state_type & X0_13=constB109 & X1_13=constB109 ) ) | ( ( X0_12=state_type & X0_13=constB108 & X1_13=constB108 ) ) | ( ( X0_12=state_type & X0_13=constB107 & X1_13=constB107 ) ) | ( ( X0_12=state_type & X0_13=constB106 & X1_13=constB106 ) ) | ( ( X0_12=state_type & X0_13=constB105 & X1_13=constB105 ) ) | ( ( X0_12=state_type & X0_13=constB104 & X1_13=constB104 ) ) | ( ( X0_12=state_type & X0_13=constB103 & X1_13=constB103 ) ) | ( ( X0_12=state_type & X0_13=constB102 & X1_13=constB102 ) ) | ( ( X0_12=state_type & X0_13=constB101 & X1_13=constB101 ) ) | ( ( X0_12=state_type & X0_13=constB100 & X1_13=constB100 ) ) | ( ( X0_12=state_type & X0_13=constB99 & X1_13=constB99 ) ) | ( ( X0_12=state_type & X0_13=constB98 & X1_13=constB98 ) ) | ( ( X0_12=state_type & X0_13=constB97 & X1_13=constB97 ) ) | ( ( X0_12=state_type & X0_13=constB96 & X1_13=constB96 ) ) | ( ( X0_12=state_type & X0_13=constB95 & X1_13=constB95 ) ) | ( ( X0_12=state_type & X0_13=constB94 & X1_13=constB94 ) ) | ( ( X0_12=state_type & X0_13=constB93 & X1_13=constB93 ) ) | ( ( X0_12=state_type & X0_13=constB92 & X1_13=constB92 ) ) | ( ( X0_12=state_type & X0_13=constB91 & X1_13=constB91 ) ) | ( ( X0_12=state_type & X0_13=constB90 & X1_13=constB90 ) ) | ( ( X0_12=state_type & X0_13=constB89 & X1_13=constB89 ) ) | ( ( X0_12=state_type & X0_13=constB88 & X1_13=constB88 ) ) | ( ( X0_12=state_type & X0_13=constB87 & X1_13=constB87 ) ) | ( ( X0_12=state_type & X0_13=constB86 & X1_13=constB86 ) ) | ( ( X0_12=state_type & X0_13=constB85 & X1_13=constB85 ) ) | ( ( X0_12=state_type & X0_13=constB84 & X1_13=constB84 ) ) | ( ( X0_12=state_type & X0_13=constB83 & X1_13=constB83 ) ) | ( ( X0_12=state_type & X0_13=constB82 & X1_13=constB82 ) ) | ( ( X0_12=state_type & X0_13=constB81 & X1_13=constB81 ) ) | ( ( X0_12=state_type & X0_13=constB80 & X1_13=constB80 ) ) | ( ( X0_12=state_type & X0_13=constB79 & X1_13=constB79 ) ) | ( ( X0_12=state_type & X0_13=constB78 & X1_13=constB78 ) ) | ( ( X0_12=state_type & X0_13=constB77 & X1_13=constB77 ) ) | ( ( X0_12=state_type & X0_13=constB76 & X1_13=constB76 ) ) | ( ( X0_12=state_type & X0_13=constB75 & X1_13=constB75 ) ) | ( ( X0_12=state_type & X0_13=constB74 & X1_13=constB74 ) ) | ( ( X0_12=state_type & X0_13=constB73 & X1_13=constB73 ) ) | ( ( X0_12=state_type & X0_13=constB72 & X1_13=constB72 ) ) | ( ( X0_12=state_type & X0_13=constB71 & X1_13=constB71 ) ) | ( ( X0_12=state_type & X0_13=constB70 & X1_13=constB70 ) ) | ( ( X0_12=state_type & X0_13=constB69 & X1_13=constB69 ) ) | ( ( X0_12=state_type & X0_13=constB68 & X1_13=constB68 ) ) | ( ( X0_12=state_type & X0_13=constB67 & X1_13=constB67 ) ) | ( ( X0_12=state_type & X0_13=constB66 & X1_13=constB66 ) ) | ( ( X0_12=state_type & X0_13=constB65 & X1_13=constB65 ) ) | ( ( X0_12=state_type & X0_13=constB64 & X1_13=constB64 ) ) | ( ( X0_12=state_type & X0_13=constB63 & X1_13=constB63 ) ) | ( ( X0_12=state_type & X0_13=constB62 & X1_13=constB62 ) ) | ( ( X0_12=state_type & X0_13=constB61 & X1_13=constB61 ) ) | ( ( X0_12=state_type & X0_13=constB60 & X1_13=constB60 ) ) | ( ( X0_12=state_type & X0_13=constB59 & X1_13=constB59 ) ) | ( ( X0_12=state_type & X0_13=constB58 & X1_13=constB58 ) ) | ( ( X0_12=state_type & X0_13=constB57 & X1_13=constB57 ) ) | ( ( X0_12=state_type & X0_13=constB56 & X1_13=constB56 ) ) | ( ( X0_12=state_type & X0_13=constB55 & X1_13=constB55 ) ) | ( ( X0_12=state_type & X0_13=constB54 & X1_13=constB54 ) ) | ( ( X0_12=state_type & X0_13=constB53 & X1_13=constB53 ) ) | ( ( X0_12=state_type & X0_13=constB52 & X1_13=constB52 ) ) | ( ( X0_12=state_type & X0_13=constB51 & X1_13=constB51 ) ) | ( ( X0_12=state_type & X0_13=constB50 & X1_13=constB50 ) ) | ( ( X0_12=state_type & X0_13=constB49 & X1_13=constB49 ) ) | ( ( X0_12=state_type & X0_13=constB48 & X1_13=constB48 ) ) | ( ( X0_12=state_type & X0_13=constB47 & X1_13=constB47 ) ) | ( ( X0_12=state_type & X0_13=constB46 & X1_13=constB46 ) ) | ( ( X0_12=state_type & X0_13=constB45 & X1_13=constB45 ) ) | ( ( X0_12=state_type & X0_13=constB44 & X1_13=constB44 ) ) | ( ( X0_12=state_type & X0_13=constB43 & X1_13=constB43 ) ) | ( ( X0_12=state_type & X0_13=constB42 & X1_13=constB42 ) ) | ( ( X0_12=state_type & X0_13=constB41 & X1_13=constB41 ) ) | ( ( X0_12=state_type & X0_13=constB40 & X1_13=constB40 ) ) | ( ( X0_12=state_type & X0_13=constB39 & X1_13=constB39 ) ) | ( ( X0_12=state_type & X0_13=constB38 & X1_13=constB38 ) ) | ( ( X0_12=state_type & X0_13=constB37 & X1_13=constB37 ) ) | ( ( X0_12=state_type & X0_13=constB36 & X1_13=constB36 ) ) | ( ( X0_12=state_type & X0_13=constB35 & X1_13=constB35 ) ) | ( ( X0_12=state_type & X0_13=constB34 & X1_13=constB34 ) ) | ( ( X0_12=state_type & X0_13=constB33 & X1_13=constB33 ) ) | ( ( X0_12=state_type & X0_13=constB32 & X1_13=constB32 ) ) | ( ( X0_12=state_type & X0_13=constB31 & X1_13=constB31 ) ) | ( ( X0_12=state_type & X0_13=constB30 & X1_13=constB30 ) ) | ( ( X0_12=state_type & X0_13=constB29 & X1_13=constB29 ) ) | ( ( X0_12=state_type & X0_13=constB28 & X1_13=constB28 ) ) | ( ( X0_12=state_type & X0_13=constB27 & X1_13=constB27 ) ) | ( ( X0_12=state_type & X0_13=constB26 & X1_13=constB26 ) ) | ( ( X0_12=state_type & X0_13=constB25 & X1_13=constB25 ) ) | ( ( X0_12=state_type & X0_13=constB24 & X1_13=constB24 ) ) | ( ( X0_12=state_type & X0_13=constB23 & X1_13=constB23 ) ) | ( ( X0_12=state_type & X0_13=constB22 & X1_13=constB22 ) ) | ( ( X0_12=state_type & X0_13=constB21 & X1_13=constB21 ) ) | ( ( X0_12=state_type & X0_13=constB20 & X1_13=constB20 ) ) | ( ( X0_12=state_type & X0_13=constB19 & X1_13=constB19 ) ) | ( ( X0_12=state_type & X0_13=constB18 & X1_13=constB18 ) ) | ( ( X0_12=state_type & X0_13=constB17 & X1_13=constB17 ) ) | ( ( X0_12=state_type & X0_13=constB16 & X1_13=constB16 ) ) | ( ( X0_12=state_type & X0_13=constB15 & X1_13=constB15 ) ) | ( ( X0_12=state_type & X0_13=constB14 & X1_13=constB14 ) ) | ( ( X0_12=state_type & X0_13=constB13 & X1_13=constB13 ) ) | ( ( X0_12=state_type & X0_13=constB12 & X1_13=constB12 ) ) | ( ( X0_12=state_type & X0_13=constB11 & X1_13=constB11 ) ) | ( ( X0_12=state_type & X0_13=constB10 & X1_13=constB10 ) ) | ( ( X0_12=state_type & X0_13=constB9 & X1_13=constB9 ) ) | ( ( X0_12=state_type & X0_13=constB8 & X1_13=constB8 ) ) | ( ( X0_12=state_type & X0_13=constB7 & X1_13=constB7 ) ) | ( ( X0_12=state_type & X0_13=constB6 & X1_13=constB6 ) ) | ( ( X0_12=state_type & X0_13=constB5 & X1_13=constB5 ) ) | ( ( X0_12=state_type & X0_13=constB4 & X1_13=constB4 ) ) | ( ( X0_12=state_type & X0_13=constB3 & X1_13=constB3 ) ) | ( ( X0_12=state_type & X0_13=constB2 & X1_13=constB2 ) ) | ( ( X0_12=state_type & X0_13=constB1 & X1_13=constB1 ) ) | ( ( X0_12=state_type & X0_13=sK0 & X1_13=constB185 ) ) | ( ( X0_12=state_type & X0_13=sK0 & X1_13=sK0 ) ) | ( ( X0_12=state_type & X1_13=constB0 ) & ( X0_13!=constB200 ) & ( X0_13!=constB199 ) & ( X0_13!=constB198 ) & ( X0_13!=constB197 ) & ( X0_13!=constB196 ) & ( X0_13!=constB195 ) & ( X0_13!=constB194 ) & ( X0_13!=constB193 ) & ( X0_13!=constB192 ) & ( X0_13!=constB191 ) & ( X0_13!=constB190 ) & ( X0_13!=constB189 ) & ( X0_13!=constB188 ) & ( X0_13!=constB187 ) & ( X0_13!=constB186 ) & ( X0_13!=constB185 ) & ( X0_13!=constB184 ) & ( X0_13!=constB183 ) & ( X0_13!=constB182 ) & ( X0_13!=constB181 ) & ( X0_13!=constB180 ) & ( X0_13!=constB179 ) & ( X0_13!=constB178 ) & ( X0_13!=constB177 ) & ( X0_13!=constB176 ) & ( X0_13!=constB175 ) & ( X0_13!=constB174 ) & ( X0_13!=constB173 ) & ( X0_13!=constB172 ) & ( X0_13!=constB171 ) & ( X0_13!=constB170 ) & ( X0_13!=constB169 ) & ( X0_13!=constB168 ) & ( X0_13!=constB167 ) & ( X0_13!=constB166 ) & ( X0_13!=constB165 ) & ( X0_13!=constB164 ) & ( X0_13!=constB163 ) & ( X0_13!=constB162 ) & ( X0_13!=constB161 ) & ( X0_13!=constB160 ) & ( X0_13!=constB159 ) & ( X0_13!=constB158 ) & ( X0_13!=constB157 ) & ( X0_13!=constB156 ) & ( X0_13!=constB155 ) & ( X0_13!=constB154 ) & ( X0_13!=constB153 ) & ( X0_13!=constB152 ) & ( X0_13!=constB151 ) & ( X0_13!=constB150 ) & ( X0_13!=constB149 ) & ( X0_13!=constB148 ) & ( X0_13!=constB147 ) & ( X0_13!=constB146 ) & ( X0_13!=constB145 ) & ( X0_13!=constB144 ) & ( X0_13!=constB143 ) & ( X0_13!=constB142 ) & ( X0_13!=constB141 ) & ( X0_13!=constB140 ) & ( X0_13!=constB139 ) & ( X0_13!=constB138 ) & ( X0_13!=constB137 ) & ( X0_13!=constB136 ) & ( X0_13!=constB135 ) & ( X0_13!=constB134 ) & ( X0_13!=constB133 ) & ( X0_13!=constB132 ) & ( X0_13!=constB131 ) & ( X0_13!=constB130 ) & ( X0_13!=constB129 ) & ( X0_13!=constB128 ) & ( X0_13!=constB127 ) & ( X0_13!=constB126 ) & ( X0_13!=constB125 ) & ( X0_13!=constB124 ) & ( X0_13!=constB123 ) & ( X0_13!=constB122 ) & ( X0_13!=constB121 ) & ( X0_13!=constB120 ) & ( X0_13!=constB119 ) & ( X0_13!=constB118 ) & ( X0_13!=constB117 ) & ( X0_13!=constB116 ) & ( X0_13!=constB115 ) & ( X0_13!=constB114 ) & ( X0_13!=constB113 ) & ( X0_13!=constB112 ) & ( X0_13!=constB111 ) & ( X0_13!=constB110 ) & ( X0_13!=constB109 ) & ( X0_13!=constB108 ) & ( X0_13!=constB107 ) & ( X0_13!=constB106 ) & ( X0_13!=constB105 ) & ( X0_13!=constB104 ) & ( X0_13!=constB103 ) & ( X0_13!=constB102 ) & ( X0_13!=constB101 ) & ( X0_13!=constB100 ) & ( X0_13!=constB99 ) & ( X0_13!=constB98 ) & ( X0_13!=constB97 ) & ( X0_13!=constB96 ) & ( X0_13!=constB95 ) & ( X0_13!=constB94 ) & ( X0_13!=constB93 ) & ( X0_13!=constB92 ) & ( X0_13!=constB91 ) & ( X0_13!=constB90 ) & ( X0_13!=constB89 ) & ( X0_13!=constB88 ) & ( X0_13!=constB87 ) & ( X0_13!=constB86 ) & ( X0_13!=constB85 ) & ( X0_13!=constB84 ) & ( X0_13!=constB83 ) & ( X0_13!=constB82 ) & ( X0_13!=constB81 ) & ( X0_13!=constB80 ) & ( X0_13!=constB79 ) & ( X0_13!=constB78 ) & ( X0_13!=constB77 ) & ( X0_13!=constB76 ) & ( X0_13!=constB75 ) & ( X0_13!=constB74 ) & ( X0_13!=constB73 ) & ( X0_13!=constB72 ) & ( X0_13!=constB71 ) & ( X0_13!=constB70 ) & ( X0_13!=constB69 ) & ( X0_13!=constB68 ) & ( X0_13!=constB67 ) & ( X0_13!=constB66 ) & ( X0_13!=constB65 ) & ( X0_13!=constB64 ) & ( X0_13!=constB63 ) & ( X0_13!=constB62 ) & ( X0_13!=constB61 ) & ( X0_13!=constB60 ) & ( X0_13!=constB59 ) & ( X0_13!=constB58 ) & ( X0_13!=constB57 ) & ( X0_13!=constB56 ) & ( X0_13!=constB55 ) & ( X0_13!=constB54 ) & ( X0_13!=constB53 ) & ( X0_13!=constB52 ) & ( X0_13!=constB51 ) & ( X0_13!=constB50 ) & ( X0_13!=constB49 ) & ( X0_13!=constB48 ) & ( X0_13!=constB47 ) & ( X0_13!=constB46 ) & ( X0_13!=constB45 ) & ( X0_13!=constB44 ) & ( X0_13!=constB43 ) & ( X0_13!=constB42 ) & ( X0_13!=constB41 ) & ( X0_13!=constB40 ) & ( X0_13!=constB39 ) & ( X0_13!=constB38 ) & ( X0_13!=constB37 ) & ( X0_13!=constB36 ) & ( X0_13!=constB35 ) & ( X0_13!=constB34 ) & ( X0_13!=constB33 ) & ( X0_13!=constB32 ) & ( X0_13!=constB31 ) & ( X0_13!=constB30 ) & ( X0_13!=constB29 ) & ( X0_13!=constB28 ) & ( X0_13!=constB27 ) & ( X0_13!=constB26 ) & ( X0_13!=constB25 ) & ( X0_13!=constB24 ) & ( X0_13!=constB23 ) & ( X0_13!=constB22 ) & ( X0_13!=constB21 ) & ( X0_13!=constB20 ) & ( X0_13!=constB19 ) & ( X0_13!=constB18 ) & ( X0_13!=constB17 ) & ( X0_13!=constB16 ) & ( X0_13!=constB15 ) & ( X0_13!=constB14 ) & ( X0_13!=constB13 ) & ( X0_13!=constB12 ) & ( X0_13!=constB11 ) & ( X0_13!=constB10 ) & ( X0_13!=constB9 ) & ( X0_13!=constB8 ) & ( X0_13!=constB7 ) & ( X0_13!=constB6 ) & ( X0_13!=constB5 ) & ( X0_13!=constB4 ) & ( X0_13!=constB3 ) & ( X0_13!=constB2 ) & ( X0_13!=constB1 ) & ( X0_13!=sK0 ) ) | ( ( X0_12=state_type & X1_13=X0_13 ) & ( X0_13!=constB200 ) & ( X0_13!=constB199 ) & ( X0_13!=constB198 ) & ( X0_13!=constB197 ) & ( X0_13!=constB196 ) & ( X0_13!=constB195 ) & ( X0_13!=constB194 ) & ( X0_13!=constB193 ) & ( X0_13!=constB192 ) & ( X0_13!=constB191 ) & ( X0_13!=constB190 ) & ( X0_13!=constB189 ) & ( X0_13!=constB188 ) & ( X0_13!=constB187 ) & ( X0_13!=constB186 ) & ( X0_13!=constB185 ) & ( X0_13!=constB184 ) & ( X0_13!=constB183 ) & ( X0_13!=constB182 ) & ( X0_13!=constB181 ) & ( X0_13!=constB180 ) & ( X0_13!=constB179 ) & ( X0_13!=constB178 ) & ( X0_13!=constB177 ) & ( X0_13!=constB176 ) & ( X0_13!=constB175 ) & ( X0_13!=constB174 ) & ( X0_13!=constB173 ) & ( X0_13!=constB172 ) & ( X0_13!=constB171 ) & ( X0_13!=constB170 ) & ( X0_13!=constB169 ) & ( X0_13!=constB168 ) & ( X0_13!=constB167 ) & ( X0_13!=constB166 ) & ( X0_13!=constB165 ) & ( X0_13!=constB164 ) & ( X0_13!=constB163 ) & ( X0_13!=constB162 ) & ( X0_13!=constB161 ) & ( X0_13!=constB160 ) & ( X0_13!=constB159 ) & ( X0_13!=constB158 ) & ( X0_13!=constB157 ) & ( X0_13!=constB156 ) & ( X0_13!=constB155 ) & ( X0_13!=constB154 ) & ( X0_13!=constB153 ) & ( X0_13!=constB152 ) & ( X0_13!=constB151 ) & ( X0_13!=constB150 ) & ( X0_13!=constB149 ) & ( X0_13!=constB148 ) & ( X0_13!=constB147 ) & ( X0_13!=constB146 ) & ( X0_13!=constB145 ) & ( X0_13!=constB144 ) & ( X0_13!=constB143 ) & ( X0_13!=constB142 ) & ( X0_13!=constB141 ) & ( X0_13!=constB140 ) & ( X0_13!=constB139 ) & ( X0_13!=constB138 ) & ( X0_13!=constB137 ) & ( X0_13!=constB136 ) & ( X0_13!=constB135 ) & ( X0_13!=constB134 ) & ( X0_13!=constB133 ) & ( X0_13!=constB132 ) & ( X0_13!=constB131 ) & ( X0_13!=constB130 ) & ( X0_13!=constB129 ) & ( X0_13!=constB128 ) & ( X0_13!=constB127 ) & ( X0_13!=constB126 ) & ( X0_13!=constB125 ) & ( X0_13!=constB124 ) & ( X0_13!=constB123 ) & ( X0_13!=constB122 ) & ( X0_13!=constB121 ) & ( X0_13!=constB120 ) & ( X0_13!=constB119 ) & ( X0_13!=constB118 ) & ( X0_13!=constB117 ) & ( X0_13!=constB116 ) & ( X0_13!=constB115 ) & ( X0_13!=constB114 ) & ( X0_13!=constB113 ) & ( X0_13!=constB112 ) & ( X0_13!=constB111 ) & ( X0_13!=constB110 ) & ( X0_13!=constB109 ) & ( X0_13!=constB108 ) & ( X0_13!=constB107 ) & ( X0_13!=constB106 ) & ( X0_13!=constB105 ) & ( X0_13!=constB104 ) & ( X0_13!=constB103 ) & ( X0_13!=constB102 ) & ( X0_13!=constB101 ) & ( X0_13!=constB100 ) & ( X0_13!=constB99 ) & ( X0_13!=constB98 ) & ( X0_13!=constB97 ) & ( X0_13!=constB96 ) & ( X0_13!=constB95 ) & ( X0_13!=constB94 ) & ( X0_13!=constB93 ) & ( X0_13!=constB92 ) & ( X0_13!=constB91 ) & ( X0_13!=constB90 ) & ( X0_13!=constB89 ) & ( X0_13!=constB88 ) & ( X0_13!=constB87 ) & ( X0_13!=constB86 ) & ( X0_13!=constB85 ) & ( X0_13!=constB84 ) & ( X0_13!=constB83 ) & ( X0_13!=constB82 ) & ( X0_13!=constB81 ) & ( X0_13!=constB80 ) & ( X0_13!=constB79 ) & ( X0_13!=constB78 ) & ( X0_13!=constB77 ) & ( X0_13!=constB76 ) & ( X0_13!=constB75 ) & ( X0_13!=constB74 ) & ( X0_13!=constB73 ) & ( X0_13!=constB72 ) & ( X0_13!=constB71 ) & ( X0_13!=constB70 ) & ( X0_13!=constB69 ) & ( X0_13!=constB68 ) & ( X0_13!=constB67 ) & ( X0_13!=constB66 ) & ( X0_13!=constB65 ) & ( X0_13!=constB64 ) & ( X0_13!=constB63 ) & ( X0_13!=constB62 ) & ( X0_13!=constB61 ) & ( X0_13!=constB60 ) & ( X0_13!=constB59 ) & ( X0_13!=constB58 ) & ( X0_13!=constB57 ) & ( X0_13!=constB56 ) & ( X0_13!=constB55 ) & ( X0_13!=constB54 ) & ( X0_13!=constB53 ) & ( X0_13!=constB52 ) & ( X0_13!=constB51 ) & ( X0_13!=constB50 ) & ( X0_13!=constB49 ) & ( X0_13!=constB48 ) & ( X0_13!=constB47 ) & ( X0_13!=constB46 ) & ( X0_13!=constB45 ) & ( X0_13!=constB44 ) & ( X0_13!=constB43 ) & ( X0_13!=constB42 ) & ( X0_13!=constB41 ) & ( X0_13!=constB40 ) & ( X0_13!=constB39 ) & ( X0_13!=constB38 ) & ( X0_13!=constB37 ) & ( X0_13!=constB36 ) & ( X0_13!=constB35 ) & ( X0_13!=constB34 ) & ( X0_13!=constB33 ) & ( X0_13!=constB32 ) & ( X0_13!=constB31 ) & ( X0_13!=constB30 ) & ( X0_13!=constB29 ) & ( X0_13!=constB28 ) & ( X0_13!=constB27 ) & ( X0_13!=constB26 ) & ( X0_13!=constB25 ) & ( X0_13!=constB24 ) & ( X0_13!=constB23 ) & ( X0_13!=constB22 ) & ( X0_13!=constB21 ) & ( X0_13!=constB20 ) & ( X0_13!=constB19 ) & ( X0_13!=constB18 ) & ( X0_13!=constB17 ) & ( X0_13!=constB16 ) & ( X0_13!=constB15 ) & ( X0_13!=constB14 ) & ( X0_13!=constB13 ) & ( X0_13!=constB12 ) & ( X0_13!=constB11 ) & ( X0_13!=constB10 ) & ( X0_13!=constB9 ) & ( X0_13!=constB8 ) & ( X0_13!=constB7 ) & ( X0_13!=constB6 ) & ( X0_13!=constB5 ) & ( X0_13!=constB4 ) & ( X0_13!=constB3 ) & ( X0_13!=constB2 ) & ( X0_13!=constB1 ) & ( X0_13!=sK0 ) ) ) ) ) ). %------ Positive definition of v9 fof(lit_def,axiom, (! [X0_13] : ( v9(X0_13) <=> ( ( ( X0_13=constB199 ) ) | ( ( X0_13=constB197 ) ) | ( ( X0_13=constB195 ) ) | ( ( X0_13=constB193 ) ) | ( ( X0_13=constB191 ) ) | ( ( X0_13=constB189 ) ) | ( ( X0_13=constB187 ) ) | ( ( X0_13=constB185 ) ) | ( ( X0_13=constB183 ) ) | ( ( X0_13=constB181 ) ) | ( ( X0_13=constB179 ) ) | ( ( X0_13=constB177 ) ) | ( ( X0_13=constB175 ) ) | ( ( X0_13=constB173 ) ) | ( ( X0_13=constB171 ) ) | ( ( X0_13=constB169 ) ) | ( ( X0_13=constB167 ) ) | ( ( X0_13=constB165 ) ) | ( ( X0_13=constB163 ) ) | ( ( X0_13=constB161 ) ) | ( ( X0_13=constB159 ) ) | ( ( X0_13=constB157 ) ) | ( ( X0_13=constB155 ) ) | ( ( X0_13=constB153 ) ) | ( ( X0_13=constB151 ) ) | ( ( X0_13=constB149 ) ) | ( ( X0_13=constB147 ) ) | ( ( X0_13=constB145 ) ) | ( ( X0_13=constB143 ) ) | ( ( X0_13=constB141 ) ) | ( ( X0_13=constB139 ) ) | ( ( X0_13=constB137 ) ) | ( ( X0_13=constB135 ) ) | ( ( X0_13=constB133 ) ) | ( ( X0_13=constB131 ) ) | ( ( X0_13=constB129 ) ) | ( ( X0_13=constB127 ) ) | ( ( X0_13=constB125 ) ) | ( ( X0_13=constB123 ) ) | ( ( X0_13=constB121 ) ) | ( ( X0_13=constB119 ) ) | ( ( X0_13=constB117 ) ) | ( ( X0_13=constB115 ) ) | ( ( X0_13=constB113 ) ) | ( ( X0_13=constB111 ) ) | ( ( X0_13=constB109 ) ) | ( ( X0_13=constB107 ) ) | ( ( X0_13=constB105 ) ) | ( ( X0_13=constB103 ) ) | ( ( X0_13=constB101 ) ) | ( ( X0_13=constB99 ) ) | ( ( X0_13=constB97 ) ) | ( ( X0_13=constB95 ) ) | ( ( X0_13=constB93 ) ) | ( ( X0_13=constB91 ) ) | ( ( X0_13=constB89 ) ) | ( ( X0_13=constB87 ) ) | ( ( X0_13=constB85 ) ) | ( ( X0_13=constB83 ) ) | ( ( X0_13=constB81 ) ) | ( ( X0_13=constB79 ) ) | ( ( X0_13=constB77 ) ) | ( ( X0_13=constB75 ) ) | ( ( X0_13=constB73 ) ) | ( ( X0_13=constB71 ) ) | ( ( X0_13=constB69 ) ) | ( ( X0_13=constB67 ) ) | ( ( X0_13=constB65 ) ) | ( ( X0_13=constB63 ) ) | ( ( X0_13=constB61 ) ) | ( ( X0_13=constB59 ) ) | ( ( X0_13=constB57 ) ) | ( ( X0_13=constB55 ) ) | ( ( X0_13=constB53 ) ) | ( ( X0_13=constB51 ) ) | ( ( X0_13=constB49 ) ) | ( ( X0_13=constB47 ) ) | ( ( X0_13=constB45 ) ) | ( ( X0_13=constB43 ) ) | ( ( X0_13=constB41 ) ) | ( ( X0_13=constB39 ) ) | ( ( X0_13=constB37 ) ) | ( ( X0_13=constB35 ) ) | ( ( X0_13=constB33 ) ) | ( ( X0_13=constB31 ) ) | ( ( X0_13=constB29 ) ) | ( ( X0_13=constB27 ) ) | ( ( X0_13=constB25 ) ) | ( ( X0_13=constB23 ) ) | ( ( X0_13=constB21 ) ) | ( ( X0_13=constB19 ) ) | ( ( X0_13=constB17 ) ) | ( ( X0_13=constB15 ) ) | ( ( X0_13=constB13 ) ) | ( ( X0_13=constB11 ) ) | ( ( X0_13=constB9 ) ) | ( ( X0_13=constB7 ) ) | ( ( X0_13=constB5 ) ) | ( ( X0_13=constB3 ) ) | ( ( X0_13=constB1 ) ) | ( ( X0_13=sK0 ) ) ) ) ) ). %------ Negative definition of v13 fof(lit_def,axiom, (! [X0_13] : ( ~(v13(X0_13)) <=> ( ( ( X0_13=constB199 ) ) | ( ( X0_13=constB197 ) ) | ( ( X0_13=constB195 ) ) | ( ( X0_13=constB193 ) ) | ( ( X0_13=constB191 ) ) | ( ( X0_13=constB189 ) ) | ( ( X0_13=constB187 ) ) | ( ( X0_13=constB185 ) ) | ( ( X0_13=constB183 ) ) | ( ( X0_13=constB181 ) ) | ( ( X0_13=constB179 ) ) | ( ( X0_13=constB177 ) ) | ( ( X0_13=constB175 ) ) | ( ( X0_13=constB173 ) ) | ( ( X0_13=constB171 ) ) | ( ( X0_13=constB169 ) ) | ( ( X0_13=constB167 ) ) | ( ( X0_13=constB165 ) ) | ( ( X0_13=constB163 ) ) | ( ( X0_13=constB161 ) ) | ( ( X0_13=constB159 ) ) | ( ( X0_13=constB157 ) ) | ( ( X0_13=constB155 ) ) | ( ( X0_13=constB153 ) ) | ( ( X0_13=constB151 ) ) | ( ( X0_13=constB149 ) ) | ( ( X0_13=constB147 ) ) | ( ( X0_13=constB145 ) ) | ( ( X0_13=constB143 ) ) | ( ( X0_13=constB141 ) ) | ( ( X0_13=constB139 ) ) | ( ( X0_13=constB137 ) ) | ( ( X0_13=constB135 ) ) | ( ( X0_13=constB133 ) ) | ( ( X0_13=constB131 ) ) | ( ( X0_13=constB129 ) ) | ( ( X0_13=constB127 ) ) | ( ( X0_13=constB125 ) ) | ( ( X0_13=constB123 ) ) | ( ( X0_13=constB121 ) ) | ( ( X0_13=constB119 ) ) | ( ( X0_13=constB117 ) ) | ( ( X0_13=constB115 ) ) | ( ( X0_13=constB113 ) ) | ( ( X0_13=constB111 ) ) | ( ( X0_13=constB109 ) ) | ( ( X0_13=constB107 ) ) | ( ( X0_13=constB105 ) ) | ( ( X0_13=constB103 ) ) | ( ( X0_13=constB101 ) ) | ( ( X0_13=constB99 ) ) | ( ( X0_13=constB97 ) ) | ( ( X0_13=constB95 ) ) | ( ( X0_13=constB93 ) ) | ( ( X0_13=constB91 ) ) | ( ( X0_13=constB89 ) ) | ( ( X0_13=constB87 ) ) | ( ( X0_13=constB85 ) ) | ( ( X0_13=constB83 ) ) | ( ( X0_13=constB81 ) ) | ( ( X0_13=constB79 ) ) | ( ( X0_13=constB77 ) ) | ( ( X0_13=constB75 ) ) | ( ( X0_13=constB73 ) ) | ( ( X0_13=constB71 ) ) | ( ( X0_13=constB69 ) ) | ( ( X0_13=constB67 ) ) | ( ( X0_13=constB65 ) ) | ( ( X0_13=constB63 ) ) | ( ( X0_13=constB61 ) ) | ( ( X0_13=constB59 ) ) | ( ( X0_13=constB57 ) ) | ( ( X0_13=constB55 ) ) | ( ( X0_13=constB53 ) ) | ( ( X0_13=constB51 ) ) | ( ( X0_13=constB49 ) ) | ( ( X0_13=constB47 ) ) | ( ( X0_13=constB45 ) ) | ( ( X0_13=constB43 ) ) | ( ( X0_13=constB41 ) ) | ( ( X0_13=constB39 ) ) | ( ( X0_13=constB37 ) ) | ( ( X0_13=constB35 ) ) | ( ( X0_13=constB33 ) ) | ( ( X0_13=constB31 ) ) | ( ( X0_13=constB29 ) ) | ( ( X0_13=constB27 ) ) | ( ( X0_13=constB25 ) ) | ( ( X0_13=constB23 ) ) | ( ( X0_13=constB21 ) ) | ( ( X0_13=constB19 ) ) | ( ( X0_13=constB17 ) ) | ( ( X0_13=constB15 ) ) | ( ( X0_13=constB13 ) ) | ( ( X0_13=constB11 ) ) | ( ( X0_13=constB9 ) ) | ( ( X0_13=constB7 ) ) | ( ( X0_13=constB5 ) ) | ( ( X0_13=constB3 ) ) | ( ( X0_13=constB1 ) ) | ( ( X0_13=sK0 ) ) ) ) ) ). %------ Positive definition of nextState fof(lit_def,axiom, (! [X0_13,X1_13] : ( nextState(X0_13,X1_13) <=> ( ( ( X0_13=constB199 & X1_13=constB200 ) ) | ( ( X0_13=constB198 & X1_13=constB199 ) ) | ( ( X0_13=constB197 & X1_13=constB198 ) ) | ( ( X0_13=constB196 & X1_13=constB197 ) ) | ( ( X0_13=constB195 & X1_13=constB196 ) ) | ( ( X0_13=constB195 & X1_13=constB6 ) ) | ( ( X0_13=constB194 & X1_13=constB195 ) ) | ( ( X0_13=constB193 & X1_13=constB194 ) ) | ( ( X0_13=constB192 & X1_13=constB193 ) ) | ( ( X0_13=constB191 & X1_13=constB192 ) ) | ( ( X0_13=constB190 & X1_13=constB191 ) ) | ( ( X0_13=constB189 & X1_13=constB190 ) ) | ( ( X0_13=constB188 & X1_13=constB189 ) ) | ( ( X0_13=constB187 & X1_13=constB188 ) ) | ( ( X0_13=constB186 & X1_13=constB187 ) ) | ( ( X0_13=constB185 & X1_13=constB196 ) ) | ( ( X0_13=constB185 & X1_13=constB186 ) ) | ( ( X0_13=constB185 & X1_13=constB146 ) ) | ( ( X0_13=constB184 & X1_13=constB185 ) ) | ( ( X0_13=constB184 & X1_13=sK0 ) ) | ( ( X0_13=constB183 & X1_13=constB184 ) ) | ( ( X0_13=constB182 & X1_13=constB183 ) ) | ( ( X0_13=constB181 & X1_13=constB182 ) ) | ( ( X0_13=constB180 & X1_13=constB181 ) ) | ( ( X0_13=constB179 & X1_13=constB180 ) ) | ( ( X0_13=constB178 & X1_13=constB179 ) ) | ( ( X0_13=constB177 & X1_13=constB178 ) ) | ( ( X0_13=constB176 & X1_13=constB177 ) ) | ( ( X0_13=constB175 & X1_13=constB176 ) ) | ( ( X0_13=constB174 & X1_13=constB175 ) ) | ( ( X0_13=constB173 & X1_13=constB174 ) ) | ( ( X0_13=constB172 & X1_13=constB173 ) ) | ( ( X0_13=constB171 & X1_13=constB172 ) ) | ( ( X0_13=constB170 & X1_13=constB171 ) ) | ( ( X0_13=constB169 & X1_13=constB170 ) ) | ( ( X0_13=constB168 & X1_13=constB169 ) ) | ( ( X0_13=constB167 & X1_13=constB168 ) ) | ( ( X0_13=constB166 & X1_13=constB167 ) ) | ( ( X0_13=constB165 & X1_13=constB166 ) ) | ( ( X0_13=constB164 & X1_13=constB165 ) ) | ( ( X0_13=constB163 & X1_13=constB164 ) ) | ( ( X0_13=constB162 & X1_13=constB163 ) ) | ( ( X0_13=constB161 & X1_13=constB162 ) ) | ( ( X0_13=constB160 & X1_13=constB161 ) ) | ( ( X0_13=constB159 & X1_13=constB160 ) ) | ( ( X0_13=constB158 & X1_13=constB159 ) ) | ( ( X0_13=constB157 & X1_13=constB158 ) ) | ( ( X0_13=constB156 & X1_13=constB157 ) ) | ( ( X0_13=constB155 & X1_13=constB156 ) ) | ( ( X0_13=constB154 & X1_13=constB155 ) ) | ( ( X0_13=constB153 & X1_13=constB154 ) ) | ( ( X0_13=constB152 & X1_13=constB153 ) ) | ( ( X0_13=constB151 & X1_13=constB152 ) ) | ( ( X0_13=constB150 & X1_13=constB151 ) ) | ( ( X0_13=constB149 & X1_13=constB150 ) ) | ( ( X0_13=constB148 & X1_13=constB149 ) ) | ( ( X0_13=constB147 & X1_13=constB148 ) ) | ( ( X0_13=constB146 & X1_13=constB147 ) ) | ( ( X0_13=constB145 & X1_13=constB196 ) ) | ( ( X0_13=constB145 & X1_13=constB146 ) ) | ( ( X0_13=constB145 & X1_13=constB6 ) ) | ( ( X0_13=constB144 & X1_13=constB145 ) ) | ( ( X0_13=constB143 & X1_13=constB144 ) ) | ( ( X0_13=constB142 & X1_13=constB143 ) ) | ( ( X0_13=constB141 & X1_13=constB142 ) ) | ( ( X0_13=constB140 & X1_13=constB141 ) ) | ( ( X0_13=constB139 & X1_13=constB140 ) ) | ( ( X0_13=constB138 & X1_13=constB139 ) ) | ( ( X0_13=constB137 & X1_13=constB138 ) ) | ( ( X0_13=constB136 & X1_13=constB137 ) ) | ( ( X0_13=constB135 & X1_13=constB136 ) ) | ( ( X0_13=constB134 & X1_13=constB135 ) ) | ( ( X0_13=constB133 & X1_13=constB134 ) ) | ( ( X0_13=constB132 & X1_13=constB133 ) ) | ( ( X0_13=constB131 & X1_13=constB132 ) ) | ( ( X0_13=constB130 & X1_13=constB131 ) ) | ( ( X0_13=constB129 & X1_13=constB130 ) ) | ( ( X0_13=constB128 & X1_13=constB129 ) ) | ( ( X0_13=constB127 & X1_13=constB128 ) ) | ( ( X0_13=constB126 & X1_13=constB127 ) ) | ( ( X0_13=constB125 & X1_13=constB126 ) ) | ( ( X0_13=constB124 & X1_13=constB125 ) ) | ( ( X0_13=constB123 & X1_13=constB124 ) ) | ( ( X0_13=constB122 & X1_13=constB123 ) ) | ( ( X0_13=constB121 & X1_13=constB122 ) ) | ( ( X0_13=constB120 & X1_13=constB121 ) ) | ( ( X0_13=constB119 & X1_13=constB120 ) ) | ( ( X0_13=constB118 & X1_13=constB119 ) ) | ( ( X0_13=constB117 & X1_13=constB118 ) ) | ( ( X0_13=constB116 & X1_13=constB117 ) ) | ( ( X0_13=constB115 & X1_13=constB116 ) ) | ( ( X0_13=constB114 & X1_13=constB115 ) ) | ( ( X0_13=constB113 & X1_13=constB114 ) ) | ( ( X0_13=constB112 & X1_13=constB113 ) ) | ( ( X0_13=constB111 & X1_13=constB112 ) ) | ( ( X0_13=constB110 & X1_13=constB111 ) ) | ( ( X0_13=constB109 & X1_13=constB110 ) ) | ( ( X0_13=constB108 & X1_13=constB109 ) ) | ( ( X0_13=constB107 & X1_13=constB108 ) ) | ( ( X0_13=constB106 & X1_13=constB107 ) ) | ( ( X0_13=constB105 & X1_13=constB106 ) ) | ( ( X0_13=constB104 & X1_13=constB105 ) ) | ( ( X0_13=constB103 & X1_13=constB104 ) ) | ( ( X0_13=constB102 & X1_13=constB103 ) ) | ( ( X0_13=constB101 & X1_13=constB102 ) ) | ( ( X0_13=constB100 & X1_13=constB101 ) ) | ( ( X0_13=constB99 & X1_13=constB100 ) ) | ( ( X0_13=constB98 & X1_13=constB99 ) ) | ( ( X0_13=constB97 & X1_13=constB98 ) ) | ( ( X0_13=constB96 & X1_13=constB97 ) ) | ( ( X0_13=constB95 & X1_13=constB96 ) ) | ( ( X0_13=constB94 & X1_13=constB95 ) ) | ( ( X0_13=constB93 & X1_13=constB94 ) ) | ( ( X0_13=constB92 & X1_13=constB93 ) ) | ( ( X0_13=constB91 & X1_13=constB92 ) ) | ( ( X0_13=constB90 & X1_13=constB91 ) ) | ( ( X0_13=constB89 & X1_13=constB90 ) ) | ( ( X0_13=constB88 & X1_13=constB89 ) ) | ( ( X0_13=constB87 & X1_13=constB88 ) ) | ( ( X0_13=constB86 & X1_13=constB87 ) ) | ( ( X0_13=constB85 & X1_13=constB86 ) ) | ( ( X0_13=constB84 & X1_13=constB85 ) ) | ( ( X0_13=constB83 & X1_13=constB84 ) ) | ( ( X0_13=constB82 & X1_13=constB83 ) ) | ( ( X0_13=constB81 & X1_13=constB82 ) ) | ( ( X0_13=constB80 & X1_13=constB81 ) ) | ( ( X0_13=constB79 & X1_13=constB80 ) ) | ( ( X0_13=constB78 & X1_13=constB79 ) ) | ( ( X0_13=constB77 & X1_13=constB78 ) ) | ( ( X0_13=constB76 & X1_13=constB77 ) ) | ( ( X0_13=constB75 & X1_13=constB76 ) ) | ( ( X0_13=constB74 & X1_13=constB75 ) ) | ( ( X0_13=constB73 & X1_13=constB74 ) ) | ( ( X0_13=constB72 & X1_13=constB73 ) ) | ( ( X0_13=constB71 & X1_13=constB72 ) ) | ( ( X0_13=constB70 & X1_13=constB71 ) ) | ( ( X0_13=constB69 & X1_13=constB70 ) ) | ( ( X0_13=constB68 & X1_13=constB69 ) ) | ( ( X0_13=constB67 & X1_13=constB68 ) ) | ( ( X0_13=constB66 & X1_13=constB67 ) ) | ( ( X0_13=constB65 & X1_13=constB66 ) ) | ( ( X0_13=constB64 & X1_13=constB65 ) ) | ( ( X0_13=constB63 & X1_13=constB64 ) ) | ( ( X0_13=constB62 & X1_13=constB63 ) ) | ( ( X0_13=constB61 & X1_13=constB62 ) ) | ( ( X0_13=constB60 & X1_13=constB61 ) ) | ( ( X0_13=constB59 & X1_13=constB60 ) ) | ( ( X0_13=constB58 & X1_13=constB59 ) ) | ( ( X0_13=constB57 & X1_13=constB58 ) ) | ( ( X0_13=constB56 & X1_13=constB57 ) ) | ( ( X0_13=constB55 & X1_13=constB56 ) ) | ( ( X0_13=constB54 & X1_13=constB55 ) ) | ( ( X0_13=constB53 & X1_13=constB54 ) ) | ( ( X0_13=constB52 & X1_13=constB53 ) ) | ( ( X0_13=constB51 & X1_13=constB52 ) ) | ( ( X0_13=constB50 & X1_13=constB51 ) ) | ( ( X0_13=constB49 & X1_13=constB50 ) ) | ( ( X0_13=constB48 & X1_13=constB49 ) ) | ( ( X0_13=constB47 & X1_13=constB48 ) ) | ( ( X0_13=constB46 & X1_13=constB47 ) ) | ( ( X0_13=constB45 & X1_13=constB46 ) ) | ( ( X0_13=constB44 & X1_13=constB45 ) ) | ( ( X0_13=constB43 & X1_13=constB44 ) ) | ( ( X0_13=constB42 & X1_13=constB43 ) ) | ( ( X0_13=constB41 & X1_13=constB42 ) ) | ( ( X0_13=constB40 & X1_13=constB41 ) ) | ( ( X0_13=constB39 & X1_13=constB40 ) ) | ( ( X0_13=constB38 & X1_13=constB39 ) ) | ( ( X0_13=constB37 & X1_13=constB38 ) ) | ( ( X0_13=constB36 & X1_13=constB37 ) ) | ( ( X0_13=constB35 & X1_13=constB36 ) ) | ( ( X0_13=constB34 & X1_13=constB35 ) ) | ( ( X0_13=constB33 & X1_13=constB34 ) ) | ( ( X0_13=constB32 & X1_13=constB33 ) ) | ( ( X0_13=constB31 & X1_13=constB32 ) ) | ( ( X0_13=constB30 & X1_13=constB31 ) ) | ( ( X0_13=constB29 & X1_13=constB30 ) ) | ( ( X0_13=constB28 & X1_13=constB29 ) ) | ( ( X0_13=constB27 & X1_13=constB28 ) ) | ( ( X0_13=constB26 & X1_13=constB27 ) ) | ( ( X0_13=constB25 & X1_13=constB26 ) ) | ( ( X0_13=constB24 & X1_13=constB25 ) ) | ( ( X0_13=constB23 & X1_13=constB24 ) ) | ( ( X0_13=constB22 & X1_13=constB23 ) ) | ( ( X0_13=constB21 & X1_13=constB22 ) ) | ( ( X0_13=constB20 & X1_13=constB21 ) ) | ( ( X0_13=constB19 & X1_13=constB20 ) ) | ( ( X0_13=constB18 & X1_13=constB19 ) ) | ( ( X0_13=constB17 & X1_13=constB18 ) ) | ( ( X0_13=constB16 & X1_13=constB17 ) ) | ( ( X0_13=constB15 & X1_13=constB16 ) ) | ( ( X0_13=constB14 & X1_13=constB15 ) ) | ( ( X0_13=constB13 & X1_13=constB14 ) ) | ( ( X0_13=constB12 & X1_13=constB13 ) ) | ( ( X0_13=constB11 & X1_13=constB12 ) ) | ( ( X0_13=constB10 & X1_13=constB11 ) ) | ( ( X0_13=constB9 & X1_13=constB10 ) ) | ( ( X0_13=constB8 & X1_13=constB9 ) ) | ( ( X0_13=constB7 & X1_13=constB8 ) ) | ( ( X0_13=constB6 & X1_13=constB7 ) ) | ( ( X0_13=constB5 & X1_13=constB6 ) ) | ( ( X0_13=constB4 & X1_13=constB5 ) ) | ( ( X0_13=constB3 & X1_13=constB4 ) ) | ( ( X0_13=constB2 & X1_13=constB3 ) ) | ( ( X0_13=constB1 & X1_13=constB2 ) ) | ( ( X0_13=constB0 & X1_13=constB1 ) ) | ( ( X0_13=sK0 & X1_13=constB196 ) ) | ( ( X0_13=sK0 & X1_13=constB186 ) ) | ( ( X0_13=sK0 & X1_13=constB146 ) ) | ( ( X1_13=constB1 ) & ( X0_13!=constB200 ) & ( X0_13!=constB199 ) & ( X0_13!=constB198 ) & ( X0_13!=constB197 ) & ( X0_13!=constB196 ) & ( X0_13!=constB195 ) & ( X0_13!=constB194 ) & ( X0_13!=constB193 ) & ( X0_13!=constB192 ) & ( X0_13!=constB191 ) & ( X0_13!=constB190 ) & ( X0_13!=constB189 ) & ( X0_13!=constB188 ) & ( X0_13!=constB187 ) & ( X0_13!=constB186 ) & ( X0_13!=constB185 ) & ( X0_13!=constB184 ) & ( X0_13!=constB183 ) & ( X0_13!=constB182 ) & ( X0_13!=constB181 ) & ( X0_13!=constB180 ) & ( X0_13!=constB179 ) & ( X0_13!=constB178 ) & ( X0_13!=constB177 ) & ( X0_13!=constB176 ) & ( X0_13!=constB175 ) & ( X0_13!=constB174 ) & ( X0_13!=constB173 ) & ( X0_13!=constB172 ) & ( X0_13!=constB171 ) & ( X0_13!=constB170 ) & ( X0_13!=constB169 ) & ( X0_13!=constB168 ) & ( X0_13!=constB167 ) & ( X0_13!=constB166 ) & ( X0_13!=constB165 ) & ( X0_13!=constB164 ) & ( X0_13!=constB163 ) & ( X0_13!=constB162 ) & ( X0_13!=constB161 ) & ( X0_13!=constB160 ) & ( X0_13!=constB159 ) & ( X0_13!=constB158 ) & ( X0_13!=constB157 ) & ( X0_13!=constB156 ) & ( X0_13!=constB155 ) & ( X0_13!=constB154 ) & ( X0_13!=constB153 ) & ( X0_13!=constB152 ) & ( X0_13!=constB151 ) & ( X0_13!=constB150 ) & ( X0_13!=constB149 ) & ( X0_13!=constB148 ) & ( X0_13!=constB147 ) & ( X0_13!=constB146 ) & ( X0_13!=constB145 ) & ( X0_13!=constB144 ) & ( X0_13!=constB143 ) & ( X0_13!=constB142 ) & ( X0_13!=constB141 ) & ( X0_13!=constB140 ) & ( X0_13!=constB139 ) & ( X0_13!=constB138 ) & ( X0_13!=constB137 ) & ( X0_13!=constB136 ) & ( X0_13!=constB135 ) & ( X0_13!=constB134 ) & ( X0_13!=constB133 ) & ( X0_13!=constB132 ) & ( X0_13!=constB131 ) & ( X0_13!=constB130 ) & ( X0_13!=constB129 ) & ( X0_13!=constB128 ) & ( X0_13!=constB127 ) & ( X0_13!=constB126 ) & ( X0_13!=constB125 ) & ( X0_13!=constB124 ) & ( X0_13!=constB123 ) & ( X0_13!=constB122 ) & ( X0_13!=constB121 ) & ( X0_13!=constB120 ) & ( X0_13!=constB119 ) & ( X0_13!=constB118 ) & ( X0_13!=constB117 ) & ( X0_13!=constB116 ) & ( X0_13!=constB115 ) & ( X0_13!=constB114 ) & ( X0_13!=constB113 ) & ( X0_13!=constB112 ) & ( X0_13!=constB111 ) & ( X0_13!=constB110 ) & ( X0_13!=constB109 ) & ( X0_13!=constB108 ) & ( X0_13!=constB107 ) & ( X0_13!=constB106 ) & ( X0_13!=constB105 ) & ( X0_13!=constB104 ) & ( X0_13!=constB103 ) & ( X0_13!=constB102 ) & ( X0_13!=constB101 ) & ( X0_13!=constB100 ) & ( X0_13!=constB99 ) & ( X0_13!=constB98 ) & ( X0_13!=constB97 ) & ( X0_13!=constB96 ) & ( X0_13!=constB95 ) & ( X0_13!=constB94 ) & ( X0_13!=constB93 ) & ( X0_13!=constB92 ) & ( X0_13!=constB91 ) & ( X0_13!=constB90 ) & ( X0_13!=constB89 ) & ( X0_13!=constB88 ) & ( X0_13!=constB87 ) & ( X0_13!=constB86 ) & ( X0_13!=constB85 ) & ( X0_13!=constB84 ) & ( X0_13!=constB83 ) & ( X0_13!=constB82 ) & ( X0_13!=constB81 ) & ( X0_13!=constB80 ) & ( X0_13!=constB79 ) & ( X0_13!=constB78 ) & ( X0_13!=constB77 ) & ( X0_13!=constB76 ) & ( X0_13!=constB75 ) & ( X0_13!=constB74 ) & ( X0_13!=constB73 ) & ( X0_13!=constB72 ) & ( X0_13!=constB71 ) & ( X0_13!=constB70 ) & ( X0_13!=constB69 ) & ( X0_13!=constB68 ) & ( X0_13!=constB67 ) & ( X0_13!=constB66 ) & ( X0_13!=constB65 ) & ( X0_13!=constB64 ) & ( X0_13!=constB63 ) & ( X0_13!=constB62 ) & ( X0_13!=constB61 ) & ( X0_13!=constB60 ) & ( X0_13!=constB59 ) & ( X0_13!=constB58 ) & ( X0_13!=constB57 ) & ( X0_13!=constB56 ) & ( X0_13!=constB55 ) & ( X0_13!=constB54 ) & ( X0_13!=constB53 ) & ( X0_13!=constB52 ) & ( X0_13!=constB51 ) & ( X0_13!=constB50 ) & ( X0_13!=constB49 ) & ( X0_13!=constB48 ) & ( X0_13!=constB47 ) & ( X0_13!=constB46 ) & ( X0_13!=constB45 ) & ( X0_13!=constB44 ) & ( X0_13!=constB43 ) & ( X0_13!=constB42 ) & ( X0_13!=constB41 ) & ( X0_13!=constB40 ) & ( X0_13!=constB39 ) & ( X0_13!=constB38 ) & ( X0_13!=constB37 ) & ( X0_13!=constB36 ) & ( X0_13!=constB35 ) & ( X0_13!=constB34 ) & ( X0_13!=constB33 ) & ( X0_13!=constB32 ) & ( X0_13!=constB31 ) & ( X0_13!=constB30 ) & ( X0_13!=constB29 ) & ( X0_13!=constB28 ) & ( X0_13!=constB27 ) & ( X0_13!=constB26 ) & ( X0_13!=constB25 ) & ( X0_13!=constB24 ) & ( X0_13!=constB23 ) & ( X0_13!=constB22 ) & ( X0_13!=constB21 ) & ( X0_13!=constB20 ) & ( X0_13!=constB19 ) & ( X0_13!=constB18 ) & ( X0_13!=constB17 ) & ( X0_13!=constB16 ) & ( X0_13!=constB15 ) & ( X0_13!=constB14 ) & ( X0_13!=constB13 ) & ( X0_13!=constB12 ) & ( X0_13!=constB11 ) & ( X0_13!=constB10 ) & ( X0_13!=constB9 ) & ( X0_13!=constB8 ) & ( X0_13!=constB7 ) & ( X0_13!=constB6 ) & ( X0_13!=constB5 ) & ( X0_13!=constB4 ) & ( X0_13!=constB3 ) & ( X0_13!=constB2 ) & ( X0_13!=constB1 ) & ( X0_13!=sK0 ) ) ) ) ) ). %------ Negative definition of v1 fof(lit_def,axiom, (! [X0_13] : ( ~(v1(X0_13)) <=> ( ( ( X0_13=constB199 ) ) | ( ( X0_13=constB197 ) ) | ( ( X0_13=constB195 ) ) | ( ( X0_13=constB193 ) ) | ( ( X0_13=constB191 ) ) | ( ( X0_13=constB189 ) ) | ( ( X0_13=constB187 ) ) | ( ( X0_13=constB185 ) ) | ( ( X0_13=constB183 ) ) | ( ( X0_13=constB181 ) ) | ( ( X0_13=constB179 ) ) | ( ( X0_13=constB177 ) ) | ( ( X0_13=constB175 ) ) | ( ( X0_13=constB173 ) ) | ( ( X0_13=constB171 ) ) | ( ( X0_13=constB169 ) ) | ( ( X0_13=constB167 ) ) | ( ( X0_13=constB165 ) ) | ( ( X0_13=constB163 ) ) | ( ( X0_13=constB161 ) ) | ( ( X0_13=constB159 ) ) | ( ( X0_13=constB157 ) ) | ( ( X0_13=constB155 ) ) | ( ( X0_13=constB153 ) ) | ( ( X0_13=constB151 ) ) | ( ( X0_13=constB149 ) ) | ( ( X0_13=constB147 ) ) | ( ( X0_13=constB145 ) ) | ( ( X0_13=constB143 ) ) | ( ( X0_13=constB141 ) ) | ( ( X0_13=constB139 ) ) | ( ( X0_13=constB137 ) ) | ( ( X0_13=constB135 ) ) | ( ( X0_13=constB133 ) ) | ( ( X0_13=constB131 ) ) | ( ( X0_13=constB129 ) ) | ( ( X0_13=constB127 ) ) | ( ( X0_13=constB125 ) ) | ( ( X0_13=constB123 ) ) | ( ( X0_13=constB121 ) ) | ( ( X0_13=constB119 ) ) | ( ( X0_13=constB117 ) ) | ( ( X0_13=constB115 ) ) | ( ( X0_13=constB113 ) ) | ( ( X0_13=constB111 ) ) | ( ( X0_13=constB109 ) ) | ( ( X0_13=constB107 ) ) | ( ( X0_13=constB105 ) ) | ( ( X0_13=constB103 ) ) | ( ( X0_13=constB101 ) ) | ( ( X0_13=constB99 ) ) | ( ( X0_13=constB97 ) ) | ( ( X0_13=constB95 ) ) | ( ( X0_13=constB93 ) ) | ( ( X0_13=constB91 ) ) | ( ( X0_13=constB89 ) ) | ( ( X0_13=constB87 ) ) | ( ( X0_13=constB85 ) ) | ( ( X0_13=constB83 ) ) | ( ( X0_13=constB81 ) ) | ( ( X0_13=constB79 ) ) | ( ( X0_13=constB77 ) ) | ( ( X0_13=constB75 ) ) | ( ( X0_13=constB73 ) ) | ( ( X0_13=constB71 ) ) | ( ( X0_13=constB69 ) ) | ( ( X0_13=constB67 ) ) | ( ( X0_13=constB65 ) ) | ( ( X0_13=constB63 ) ) | ( ( X0_13=constB61 ) ) | ( ( X0_13=constB59 ) ) | ( ( X0_13=constB57 ) ) | ( ( X0_13=constB55 ) ) | ( ( X0_13=constB53 ) ) | ( ( X0_13=constB51 ) ) | ( ( X0_13=constB49 ) ) | ( ( X0_13=constB47 ) ) | ( ( X0_13=constB45 ) ) | ( ( X0_13=constB43 ) ) | ( ( X0_13=constB41 ) ) | ( ( X0_13=constB39 ) ) | ( ( X0_13=constB37 ) ) | ( ( X0_13=constB35 ) ) | ( ( X0_13=constB33 ) ) | ( ( X0_13=constB31 ) ) | ( ( X0_13=constB29 ) ) | ( ( X0_13=constB27 ) ) | ( ( X0_13=constB25 ) ) | ( ( X0_13=constB23 ) ) | ( ( X0_13=constB21 ) ) | ( ( X0_13=constB19 ) ) | ( ( X0_13=constB17 ) ) | ( ( X0_13=constB15 ) ) | ( ( X0_13=constB13 ) ) | ( ( X0_13=constB11 ) ) | ( ( X0_13=constB9 ) ) | ( ( X0_13=constB7 ) ) | ( ( X0_13=constB5 ) ) | ( ( X0_13=constB3 ) ) | ( ( X0_13=constB1 ) ) | ( ( X0_13=sK0 ) ) ) ) ) ). %------ Negative definition of v37 fof(lit_def,axiom, (! [X0_13] : ( ~(v37(X0_13)) <=> ( ( ( X0_13=constB199 ) ) | ( ( X0_13=constB197 ) ) | ( ( X0_13=constB195 ) ) | ( ( X0_13=constB193 ) ) | ( ( X0_13=constB191 ) ) | ( ( X0_13=constB189 ) ) | ( ( X0_13=constB187 ) ) | ( ( X0_13=constB185 ) ) | ( ( X0_13=constB183 ) ) | ( ( X0_13=constB181 ) ) | ( ( X0_13=constB179 ) ) | ( ( X0_13=constB177 ) ) | ( ( X0_13=constB175 ) ) | ( ( X0_13=constB173 ) ) | ( ( X0_13=constB171 ) ) | ( ( X0_13=constB169 ) ) | ( ( X0_13=constB167 ) ) | ( ( X0_13=constB165 ) ) | ( ( X0_13=constB163 ) ) | ( ( X0_13=constB161 ) ) | ( ( X0_13=constB159 ) ) | ( ( X0_13=constB157 ) ) | ( ( X0_13=constB155 ) ) | ( ( X0_13=constB153 ) ) | ( ( X0_13=constB151 ) ) | ( ( X0_13=constB149 ) ) | ( ( X0_13=constB147 ) ) | ( ( X0_13=constB145 ) ) | ( ( X0_13=constB143 ) ) | ( ( X0_13=constB141 ) ) | ( ( X0_13=constB139 ) ) | ( ( X0_13=constB137 ) ) | ( ( X0_13=constB135 ) ) | ( ( X0_13=constB133 ) ) | ( ( X0_13=constB131 ) ) | ( ( X0_13=constB129 ) ) | ( ( X0_13=constB127 ) ) | ( ( X0_13=constB125 ) ) | ( ( X0_13=constB123 ) ) | ( ( X0_13=constB121 ) ) | ( ( X0_13=constB119 ) ) | ( ( X0_13=constB117 ) ) | ( ( X0_13=constB115 ) ) | ( ( X0_13=constB113 ) ) | ( ( X0_13=constB111 ) ) | ( ( X0_13=constB109 ) ) | ( ( X0_13=constB107 ) ) | ( ( X0_13=constB105 ) ) | ( ( X0_13=constB103 ) ) | ( ( X0_13=constB101 ) ) | ( ( X0_13=constB99 ) ) | ( ( X0_13=constB97 ) ) | ( ( X0_13=constB95 ) ) | ( ( X0_13=constB93 ) ) | ( ( X0_13=constB91 ) ) | ( ( X0_13=constB89 ) ) | ( ( X0_13=constB87 ) ) | ( ( X0_13=constB85 ) ) | ( ( X0_13=constB83 ) ) | ( ( X0_13=constB81 ) ) | ( ( X0_13=constB79 ) ) | ( ( X0_13=constB77 ) ) | ( ( X0_13=constB75 ) ) | ( ( X0_13=constB73 ) ) | ( ( X0_13=constB71 ) ) | ( ( X0_13=constB69 ) ) | ( ( X0_13=constB67 ) ) | ( ( X0_13=constB65 ) ) | ( ( X0_13=constB63 ) ) | ( ( X0_13=constB61 ) ) | ( ( X0_13=constB59 ) ) | ( ( X0_13=constB57 ) ) | ( ( X0_13=constB55 ) ) | ( ( X0_13=constB53 ) ) | ( ( X0_13=constB51 ) ) | ( ( X0_13=constB49 ) ) | ( ( X0_13=constB47 ) ) | ( ( X0_13=constB45 ) ) | ( ( X0_13=constB43 ) ) | ( ( X0_13=constB41 ) ) | ( ( X0_13=constB39 ) ) | ( ( X0_13=constB37 ) ) | ( ( X0_13=constB35 ) ) | ( ( X0_13=constB33 ) ) | ( ( X0_13=constB31 ) ) | ( ( X0_13=constB29 ) ) | ( ( X0_13=constB27 ) ) | ( ( X0_13=constB25 ) ) | ( ( X0_13=constB23 ) ) | ( ( X0_13=constB21 ) ) | ( ( X0_13=constB19 ) ) | ( ( X0_13=constB17 ) ) | ( ( X0_13=constB15 ) ) | ( ( X0_13=constB13 ) ) | ( ( X0_13=constB11 ) ) | ( ( X0_13=constB9 ) ) | ( ( X0_13=constB7 ) ) | ( ( X0_13=constB5 ) ) | ( ( X0_13=constB3 ) ) | ( ( X0_13=constB1 ) ) | ( ( X0_13=sK0 ) ) ) ) ) ). %------ Negative definition of v34 fof(lit_def,axiom, (! [X0_13] : ( ~(v34(X0_13)) <=> ( ( ( X0_13=constB200 ) ) | ( ( X0_13=constB199 ) ) | ( ( X0_13=constB198 ) ) | ( ( X0_13=constB197 ) ) | ( ( X0_13=constB196 ) ) | ( ( X0_13=constB195 ) ) | ( ( X0_13=constB194 ) ) | ( ( X0_13=constB193 ) ) | ( ( X0_13=constB192 ) ) | ( ( X0_13=constB191 ) ) | ( ( X0_13=constB190 ) ) | ( ( X0_13=constB189 ) ) | ( ( X0_13=constB188 ) ) | ( ( X0_13=constB187 ) ) | ( ( X0_13=constB186 ) ) | ( ( X0_13=constB185 ) ) | ( ( X0_13=constB184 ) ) | ( ( X0_13=constB183 ) ) | ( ( X0_13=constB182 ) ) | ( ( X0_13=constB181 ) ) | ( ( X0_13=constB180 ) ) | ( ( X0_13=constB179 ) ) | ( ( X0_13=constB178 ) ) | ( ( X0_13=constB177 ) ) | ( ( X0_13=constB176 ) ) | ( ( X0_13=constB175 ) ) | ( ( X0_13=constB174 ) ) | ( ( X0_13=constB173 ) ) | ( ( X0_13=constB172 ) ) | ( ( X0_13=constB171 ) ) | ( ( X0_13=constB170 ) ) | ( ( X0_13=constB169 ) ) | ( ( X0_13=constB168 ) ) | ( ( X0_13=constB167 ) ) | ( ( X0_13=constB166 ) ) | ( ( X0_13=constB165 ) ) | ( ( X0_13=constB164 ) ) | ( ( X0_13=constB163 ) ) | ( ( X0_13=constB162 ) ) | ( ( X0_13=constB161 ) ) | ( ( X0_13=constB160 ) ) | ( ( X0_13=constB159 ) ) | ( ( X0_13=constB158 ) ) | ( ( X0_13=constB157 ) ) | ( ( X0_13=constB156 ) ) | ( ( X0_13=constB155 ) ) | ( ( X0_13=constB154 ) ) | ( ( X0_13=constB153 ) ) | ( ( X0_13=constB152 ) ) | ( ( X0_13=constB151 ) ) | ( ( X0_13=constB150 ) ) | ( ( X0_13=constB149 ) ) | ( ( X0_13=constB148 ) ) | ( ( X0_13=constB147 ) ) | ( ( X0_13=constB146 ) ) | ( ( X0_13=constB145 ) ) | ( ( X0_13=constB144 ) ) | ( ( X0_13=constB143 ) ) | ( ( X0_13=constB142 ) ) | ( ( X0_13=constB141 ) ) | ( ( X0_13=constB140 ) ) | ( ( X0_13=constB139 ) ) | ( ( X0_13=constB138 ) ) | ( ( X0_13=constB137 ) ) | ( ( X0_13=constB136 ) ) | ( ( X0_13=constB135 ) ) | ( ( X0_13=constB134 ) ) | ( ( X0_13=constB133 ) ) | ( ( X0_13=constB132 ) ) | ( ( X0_13=constB131 ) ) | ( ( X0_13=constB130 ) ) | ( ( X0_13=constB129 ) ) | ( ( X0_13=constB128 ) ) | ( ( X0_13=constB127 ) ) | ( ( X0_13=constB126 ) ) | ( ( X0_13=constB125 ) ) | ( ( X0_13=constB124 ) ) | ( ( X0_13=constB123 ) ) | ( ( X0_13=constB122 ) ) | ( ( X0_13=constB121 ) ) | ( ( X0_13=constB120 ) ) | ( ( X0_13=constB119 ) ) | ( ( X0_13=constB118 ) ) | ( ( X0_13=constB117 ) ) | ( ( X0_13=constB116 ) ) | ( ( X0_13=constB115 ) ) | ( ( X0_13=constB114 ) ) | ( ( X0_13=constB113 ) ) | ( ( X0_13=constB112 ) ) | ( ( X0_13=constB111 ) ) | ( ( X0_13=constB110 ) ) | ( ( X0_13=constB109 ) ) | ( ( X0_13=constB108 ) ) | ( ( X0_13=constB107 ) ) | ( ( X0_13=constB106 ) ) | ( ( X0_13=constB105 ) ) | ( ( X0_13=constB104 ) ) | ( ( X0_13=constB103 ) ) | ( ( X0_13=constB102 ) ) | ( ( X0_13=constB101 ) ) | ( ( X0_13=constB100 ) ) | ( ( X0_13=constB99 ) ) | ( ( X0_13=constB98 ) ) | ( ( X0_13=constB97 ) ) | ( ( X0_13=constB96 ) ) | ( ( X0_13=constB95 ) ) | ( ( X0_13=constB94 ) ) | ( ( X0_13=constB93 ) ) | ( ( X0_13=constB92 ) ) | ( ( X0_13=constB91 ) ) | ( ( X0_13=constB90 ) ) | ( ( X0_13=constB89 ) ) | ( ( X0_13=constB88 ) ) | ( ( X0_13=constB87 ) ) | ( ( X0_13=constB86 ) ) | ( ( X0_13=constB85 ) ) | ( ( X0_13=constB84 ) ) | ( ( X0_13=constB83 ) ) | ( ( X0_13=constB82 ) ) | ( ( X0_13=constB81 ) ) | ( ( X0_13=constB80 ) ) | ( ( X0_13=constB79 ) ) | ( ( X0_13=constB78 ) ) | ( ( X0_13=constB77 ) ) | ( ( X0_13=constB76 ) ) | ( ( X0_13=constB75 ) ) | ( ( X0_13=constB74 ) ) | ( ( X0_13=constB73 ) ) | ( ( X0_13=constB72 ) ) | ( ( X0_13=constB71 ) ) | ( ( X0_13=constB70 ) ) | ( ( X0_13=constB69 ) ) | ( ( X0_13=constB68 ) ) | ( ( X0_13=constB67 ) ) | ( ( X0_13=constB66 ) ) | ( ( X0_13=constB65 ) ) | ( ( X0_13=constB64 ) ) | ( ( X0_13=constB63 ) ) | ( ( X0_13=constB62 ) ) | ( ( X0_13=constB61 ) ) | ( ( X0_13=constB60 ) ) | ( ( X0_13=constB59 ) ) | ( ( X0_13=constB58 ) ) | ( ( X0_13=constB57 ) ) | ( ( X0_13=constB56 ) ) | ( ( X0_13=constB55 ) ) | ( ( X0_13=constB54 ) ) | ( ( X0_13=constB53 ) ) | ( ( X0_13=constB52 ) ) | ( ( X0_13=constB51 ) ) | ( ( X0_13=constB50 ) ) | ( ( X0_13=constB49 ) ) | ( ( X0_13=constB48 ) ) | ( ( X0_13=constB47 ) ) | ( ( X0_13=constB46 ) ) | ( ( X0_13=constB45 ) ) | ( ( X0_13=constB44 ) ) | ( ( X0_13=constB43 ) ) | ( ( X0_13=constB42 ) ) | ( ( X0_13=constB41 ) ) | ( ( X0_13=constB40 ) ) | ( ( X0_13=constB39 ) ) | ( ( X0_13=constB38 ) ) | ( ( X0_13=constB37 ) ) | ( ( X0_13=constB36 ) ) | ( ( X0_13=constB35 ) ) | ( ( X0_13=constB34 ) ) | ( ( X0_13=constB33 ) ) | ( ( X0_13=constB32 ) ) | ( ( X0_13=constB31 ) ) | ( ( X0_13=constB30 ) ) | ( ( X0_13=constB29 ) ) | ( ( X0_13=constB28 ) ) | ( ( X0_13=constB27 ) ) | ( ( X0_13=constB26 ) ) | ( ( X0_13=constB25 ) ) | ( ( X0_13=constB24 ) ) | ( ( X0_13=constB23 ) ) | ( ( X0_13=constB22 ) ) | ( ( X0_13=constB21 ) ) | ( ( X0_13=constB20 ) ) | ( ( X0_13=constB19 ) ) | ( ( X0_13=constB18 ) ) | ( ( X0_13=constB17 ) ) | ( ( X0_13=constB16 ) ) | ( ( X0_13=constB15 ) ) | ( ( X0_13=constB14 ) ) | ( ( X0_13=constB13 ) ) | ( ( X0_13=constB12 ) ) | ( ( X0_13=constB11 ) ) | ( ( X0_13=constB10 ) ) | ( ( X0_13=constB9 ) ) | ( ( X0_13=constB8 ) ) | ( ( X0_13=constB7 ) ) | ( ( X0_13=constB6 ) ) | ( ( X0_13=constB5 ) ) | ( ( X0_13=constB4 ) ) | ( ( X0_13=constB3 ) ) | ( ( X0_13=constB2 ) ) | ( ( X0_13=constB1 ) ) | ( ( X0_13=sK0 ) ) ) ) ) ). %------ Negative definition of v36 fof(lit_def,axiom, (! [X0_13] : ( ~(v36(X0_13)) <=> ( ( ( X0_13=constB200 ) ) | ( ( X0_13=constB199 ) ) | ( ( X0_13=constB198 ) ) | ( ( X0_13=constB197 ) ) | ( ( X0_13=constB196 ) ) | ( ( X0_13=constB195 ) ) | ( ( X0_13=constB194 ) ) | ( ( X0_13=constB193 ) ) | ( ( X0_13=constB192 ) ) | ( ( X0_13=constB191 ) ) | ( ( X0_13=constB190 ) ) | ( ( X0_13=constB189 ) ) | ( ( X0_13=constB188 ) ) | ( ( X0_13=constB187 ) ) | ( ( X0_13=constB186 ) ) | ( ( X0_13=constB185 ) ) | ( ( X0_13=constB184 ) ) | ( ( X0_13=constB183 ) ) | ( ( X0_13=constB182 ) ) | ( ( X0_13=constB181 ) ) | ( ( X0_13=constB180 ) ) | ( ( X0_13=constB179 ) ) | ( ( X0_13=constB178 ) ) | ( ( X0_13=constB177 ) ) | ( ( X0_13=constB176 ) ) | ( ( X0_13=constB175 ) ) | ( ( X0_13=constB174 ) ) | ( ( X0_13=constB173 ) ) | ( ( X0_13=constB172 ) ) | ( ( X0_13=constB171 ) ) | ( ( X0_13=constB170 ) ) | ( ( X0_13=constB169 ) ) | ( ( X0_13=constB168 ) ) | ( ( X0_13=constB167 ) ) | ( ( X0_13=constB166 ) ) | ( ( X0_13=constB165 ) ) | ( ( X0_13=constB164 ) ) | ( ( X0_13=constB163 ) ) | ( ( X0_13=constB162 ) ) | ( ( X0_13=constB161 ) ) | ( ( X0_13=constB160 ) ) | ( ( X0_13=constB159 ) ) | ( ( X0_13=constB158 ) ) | ( ( X0_13=constB157 ) ) | ( ( X0_13=constB156 ) ) | ( ( X0_13=constB155 ) ) | ( ( X0_13=constB154 ) ) | ( ( X0_13=constB153 ) ) | ( ( X0_13=constB152 ) ) | ( ( X0_13=constB151 ) ) | ( ( X0_13=constB150 ) ) | ( ( X0_13=constB149 ) ) | ( ( X0_13=constB148 ) ) | ( ( X0_13=constB147 ) ) | ( ( X0_13=constB146 ) ) | ( ( X0_13=constB145 ) ) | ( ( X0_13=constB144 ) ) | ( ( X0_13=constB143 ) ) | ( ( X0_13=constB142 ) ) | ( ( X0_13=constB141 ) ) | ( ( X0_13=constB140 ) ) | ( ( X0_13=constB139 ) ) | ( ( X0_13=constB138 ) ) | ( ( X0_13=constB137 ) ) | ( ( X0_13=constB136 ) ) | ( ( X0_13=constB135 ) ) | ( ( X0_13=constB134 ) ) | ( ( X0_13=constB133 ) ) | ( ( X0_13=constB132 ) ) | ( ( X0_13=constB131 ) ) | ( ( X0_13=constB130 ) ) | ( ( X0_13=constB129 ) ) | ( ( X0_13=constB128 ) ) | ( ( X0_13=constB127 ) ) | ( ( X0_13=constB126 ) ) | ( ( X0_13=constB125 ) ) | ( ( X0_13=constB124 ) ) | ( ( X0_13=constB123 ) ) | ( ( X0_13=constB122 ) ) | ( ( X0_13=constB121 ) ) | ( ( X0_13=constB120 ) ) | ( ( X0_13=constB119 ) ) | ( ( X0_13=constB118 ) ) | ( ( X0_13=constB117 ) ) | ( ( X0_13=constB116 ) ) | ( ( X0_13=constB115 ) ) | ( ( X0_13=constB114 ) ) | ( ( X0_13=constB113 ) ) | ( ( X0_13=constB112 ) ) | ( ( X0_13=constB111 ) ) | ( ( X0_13=constB110 ) ) | ( ( X0_13=constB109 ) ) | ( ( X0_13=constB108 ) ) | ( ( X0_13=constB107 ) ) | ( ( X0_13=constB106 ) ) | ( ( X0_13=constB105 ) ) | ( ( X0_13=constB104 ) ) | ( ( X0_13=constB103 ) ) | ( ( X0_13=constB102 ) ) | ( ( X0_13=constB101 ) ) | ( ( X0_13=constB100 ) ) | ( ( X0_13=constB99 ) ) | ( ( X0_13=constB98 ) ) | ( ( X0_13=constB97 ) ) | ( ( X0_13=constB96 ) ) | ( ( X0_13=constB95 ) ) | ( ( X0_13=constB94 ) ) | ( ( X0_13=constB93 ) ) | ( ( X0_13=constB92 ) ) | ( ( X0_13=constB91 ) ) | ( ( X0_13=constB90 ) ) | ( ( X0_13=constB89 ) ) | ( ( X0_13=constB88 ) ) | ( ( X0_13=constB87 ) ) | ( ( X0_13=constB86 ) ) | ( ( X0_13=constB85 ) ) | ( ( X0_13=constB84 ) ) | ( ( X0_13=constB83 ) ) | ( ( X0_13=constB82 ) ) | ( ( X0_13=constB81 ) ) | ( ( X0_13=constB80 ) ) | ( ( X0_13=constB79 ) ) | ( ( X0_13=constB78 ) ) | ( ( X0_13=constB77 ) ) | ( ( X0_13=constB76 ) ) | ( ( X0_13=constB75 ) ) | ( ( X0_13=constB74 ) ) | ( ( X0_13=constB73 ) ) | ( ( X0_13=constB72 ) ) | ( ( X0_13=constB71 ) ) | ( ( X0_13=constB70 ) ) | ( ( X0_13=constB69 ) ) | ( ( X0_13=constB68 ) ) | ( ( X0_13=constB67 ) ) | ( ( X0_13=constB66 ) ) | ( ( X0_13=constB65 ) ) | ( ( X0_13=constB64 ) ) | ( ( X0_13=constB63 ) ) | ( ( X0_13=constB62 ) ) | ( ( X0_13=constB61 ) ) | ( ( X0_13=constB60 ) ) | ( ( X0_13=constB59 ) ) | ( ( X0_13=constB58 ) ) | ( ( X0_13=constB57 ) ) | ( ( X0_13=constB56 ) ) | ( ( X0_13=constB55 ) ) | ( ( X0_13=constB54 ) ) | ( ( X0_13=constB53 ) ) | ( ( X0_13=constB52 ) ) | ( ( X0_13=constB51 ) ) | ( ( X0_13=constB50 ) ) | ( ( X0_13=constB49 ) ) | ( ( X0_13=constB48 ) ) | ( ( X0_13=constB47 ) ) | ( ( X0_13=constB46 ) ) | ( ( X0_13=constB45 ) ) | ( ( X0_13=constB44 ) ) | ( ( X0_13=constB43 ) ) | ( ( X0_13=constB42 ) ) | ( ( X0_13=constB41 ) ) | ( ( X0_13=constB40 ) ) | ( ( X0_13=constB39 ) ) | ( ( X0_13=constB38 ) ) | ( ( X0_13=constB37 ) ) | ( ( X0_13=constB36 ) ) | ( ( X0_13=constB35 ) ) | ( ( X0_13=constB34 ) ) | ( ( X0_13=constB33 ) ) | ( ( X0_13=constB32 ) ) | ( ( X0_13=constB31 ) ) | ( ( X0_13=constB30 ) ) | ( ( X0_13=constB29 ) ) | ( ( X0_13=constB28 ) ) | ( ( X0_13=constB27 ) ) | ( ( X0_13=constB26 ) ) | ( ( X0_13=constB25 ) ) | ( ( X0_13=constB24 ) ) | ( ( X0_13=constB23 ) ) | ( ( X0_13=constB22 ) ) | ( ( X0_13=constB21 ) ) | ( ( X0_13=constB20 ) ) | ( ( X0_13=constB19 ) ) | ( ( X0_13=constB18 ) ) | ( ( X0_13=constB17 ) ) | ( ( X0_13=constB16 ) ) | ( ( X0_13=constB15 ) ) | ( ( X0_13=constB14 ) ) | ( ( X0_13=constB13 ) ) | ( ( X0_13=constB12 ) ) | ( ( X0_13=constB11 ) ) | ( ( X0_13=constB10 ) ) | ( ( X0_13=constB9 ) ) | ( ( X0_13=constB8 ) ) | ( ( X0_13=constB7 ) ) | ( ( X0_13=constB6 ) ) | ( ( X0_13=constB5 ) ) | ( ( X0_13=constB4 ) ) | ( ( X0_13=constB3 ) ) | ( ( X0_13=constB2 ) ) | ( ( X0_13=sK0 ) ) ) ) ) ). %------ Positive definition of v44 fof(lit_def,axiom, (! [X0_13] : ( v44(X0_13) <=>$false
)
)
).

%------ Positive definition of v46
fof(lit_def,axiom,
(! [X0_13] :
( v46(X0_13) <=>
$false ) ) ). %------ Positive definition of v64 fof(lit_def,axiom, (! [X0_13] : ( v64(X0_13) <=>$true
)
)
).

%------ Positive definition of v60
fof(lit_def,axiom,
(! [X0_13] :
( v60(X0_13) <=>
$false ) ) ). %------ Positive definition of v90 fof(lit_def,axiom, (! [X0_13,X0_15] : ( v90(X0_13,X0_15) <=> ( ( ( X0_13=constB200 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB200 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB199 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB198 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB197 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB196 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB195 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB195 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB194 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB194 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB193 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB192 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB191 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB191 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB190 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB190 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB189 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB188 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB187 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB186 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB185 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB185 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB184 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB184 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB183 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB182 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB181 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB181 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB180 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB180 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB179 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB178 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB177 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB176 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB175 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB175 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB174 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB174 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB173 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB172 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB171 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB171 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB170 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB170 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB169 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB168 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB167 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB166 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB165 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB165 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB164 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB164 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB163 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB162 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB161 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB161 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB160 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB160 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB159 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB158 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB157 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB156 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB155 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB155 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB154 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB154 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB153 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB152 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB151 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB151 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB150 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB150 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB149 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB148 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB147 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB146 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB145 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB145 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB144 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB144 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB143 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB142 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB141 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB141 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB140 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB140 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB139 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB138 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB137 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB136 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB135 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB135 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB134 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB134 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB133 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB132 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB131 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB131 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB130 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB130 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB129 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB128 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB127 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB126 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB125 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB125 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB124 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB124 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB123 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB122 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB121 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB121 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB120 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB120 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB119 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB118 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB117 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB116 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB115 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB115 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB114 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB114 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB113 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB112 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB111 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB111 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB110 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB110 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB109 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB108 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB107 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB106 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB105 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB105 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB104 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB104 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB103 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB102 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB101 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB101 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB100 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB100 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB99 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB98 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB97 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB96 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB95 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB95 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB94 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB94 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB93 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB92 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB91 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB91 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB90 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB90 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB89 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB88 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB87 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB86 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB85 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB85 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB84 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB84 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB83 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB82 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB81 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB81 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB80 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB80 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB79 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB78 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB77 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB76 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB75 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB75 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB74 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB74 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB73 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB72 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB71 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB71 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB70 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB70 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB69 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB68 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB67 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB66 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB65 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB65 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB64 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB64 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB63 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB62 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB61 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB61 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB60 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB60 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB59 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB58 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB57 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB56 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB55 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB55 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB54 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB54 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB53 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB52 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB51 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB51 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB50 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB50 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB49 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB48 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB47 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB46 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB45 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB45 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB44 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB44 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB43 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB42 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB41 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB41 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB40 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB40 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB39 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB38 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB37 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB36 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB35 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB35 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB34 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB34 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB33 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB32 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB31 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB31 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB30 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB30 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB29 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB28 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB27 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB26 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB25 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB25 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB24 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB24 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB23 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB22 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB21 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB21 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB20 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB20 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB19 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB18 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB17 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB16 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB15 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB15 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB14 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB14 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB13 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB12 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB11 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB11 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB10 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB10 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB9 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB8 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB7 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB6 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB5 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB5 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB4 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB4 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB3 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB2 & X0_15=bitIndex2 ) ) | ( ( X0_13=sK0 & X0_15=bitIndex1 ) ) | ( ( X0_13=sK0 & X0_15=bitIndex2 ) ) ) ) ) ). %------ Negative definition of v104 fof(lit_def,axiom, (! [X0_13] : ( ~(v104(X0_13)) <=> ( ( ( X0_13=constB200 ) ) | ( ( X0_13=constB198 ) ) | ( ( X0_13=constB196 ) ) | ( ( X0_13=constB194 ) ) | ( ( X0_13=constB192 ) ) | ( ( X0_13=constB190 ) ) | ( ( X0_13=constB188 ) ) | ( ( X0_13=constB186 ) ) | ( ( X0_13=constB184 ) ) | ( ( X0_13=constB182 ) ) | ( ( X0_13=constB180 ) ) | ( ( X0_13=constB178 ) ) | ( ( X0_13=constB176 ) ) | ( ( X0_13=constB174 ) ) | ( ( X0_13=constB172 ) ) | ( ( X0_13=constB170 ) ) | ( ( X0_13=constB168 ) ) | ( ( X0_13=constB166 ) ) | ( ( X0_13=constB164 ) ) | ( ( X0_13=constB162 ) ) | ( ( X0_13=constB160 ) ) | ( ( X0_13=constB158 ) ) | ( ( X0_13=constB156 ) ) | ( ( X0_13=constB154 ) ) | ( ( X0_13=constB152 ) ) | ( ( X0_13=constB150 ) ) | ( ( X0_13=constB148 ) ) | ( ( X0_13=constB146 ) ) | ( ( X0_13=constB144 ) ) | ( ( X0_13=constB142 ) ) | ( ( X0_13=constB140 ) ) | ( ( X0_13=constB138 ) ) | ( ( X0_13=constB136 ) ) | ( ( X0_13=constB134 ) ) | ( ( X0_13=constB132 ) ) | ( ( X0_13=constB130 ) ) | ( ( X0_13=constB128 ) ) | ( ( X0_13=constB126 ) ) | ( ( X0_13=constB124 ) ) | ( ( X0_13=constB122 ) ) | ( ( X0_13=constB120 ) ) | ( ( X0_13=constB118 ) ) | ( ( X0_13=constB116 ) ) | ( ( X0_13=constB114 ) ) | ( ( X0_13=constB112 ) ) | ( ( X0_13=constB110 ) ) | ( ( X0_13=constB108 ) ) | ( ( X0_13=constB106 ) ) | ( ( X0_13=constB104 ) ) | ( ( X0_13=constB102 ) ) | ( ( X0_13=constB100 ) ) | ( ( X0_13=constB98 ) ) | ( ( X0_13=constB96 ) ) | ( ( X0_13=constB94 ) ) | ( ( X0_13=constB92 ) ) | ( ( X0_13=constB90 ) ) | ( ( X0_13=constB88 ) ) | ( ( X0_13=constB86 ) ) | ( ( X0_13=constB84 ) ) | ( ( X0_13=constB82 ) ) | ( ( X0_13=constB80 ) ) | ( ( X0_13=constB78 ) ) | ( ( X0_13=constB76 ) ) | ( ( X0_13=constB74 ) ) | ( ( X0_13=constB72 ) ) | ( ( X0_13=constB70 ) ) | ( ( X0_13=constB68 ) ) | ( ( X0_13=constB66 ) ) | ( ( X0_13=constB64 ) ) | ( ( X0_13=constB62 ) ) | ( ( X0_13=constB60 ) ) | ( ( X0_13=constB58 ) ) | ( ( X0_13=constB56 ) ) | ( ( X0_13=constB54 ) ) | ( ( X0_13=constB52 ) ) | ( ( X0_13=constB50 ) ) | ( ( X0_13=constB48 ) ) | ( ( X0_13=constB46 ) ) | ( ( X0_13=constB44 ) ) | ( ( X0_13=constB42 ) ) | ( ( X0_13=constB40 ) ) | ( ( X0_13=constB38 ) ) | ( ( X0_13=constB36 ) ) | ( ( X0_13=constB34 ) ) | ( ( X0_13=constB32 ) ) | ( ( X0_13=constB30 ) ) | ( ( X0_13=constB28 ) ) | ( ( X0_13=constB26 ) ) | ( ( X0_13=constB24 ) ) | ( ( X0_13=constB22 ) ) | ( ( X0_13=constB20 ) ) | ( ( X0_13=constB18 ) ) | ( ( X0_13=constB16 ) ) | ( ( X0_13=constB14 ) ) | ( ( X0_13=constB12 ) ) | ( ( X0_13=constB10 ) ) | ( ( X0_13=constB8 ) ) | ( ( X0_13=constB6 ) ) | ( ( X0_13=constB4 ) ) | ( ( X0_13=constB2 ) ) ) ) ) ). %------ Negative definition of v119 fof(lit_def,axiom, (! [X0_13] : ( ~(v119(X0_13)) <=> ( ( ( X0_13=constB200 ) ) | ( ( X0_13=constB199 ) ) | ( ( X0_13=constB198 ) ) | ( ( X0_13=constB197 ) ) | ( ( X0_13=constB196 ) ) | ( ( X0_13=constB195 ) ) | ( ( X0_13=constB194 ) ) | ( ( X0_13=constB193 ) ) | ( ( X0_13=constB192 ) ) | ( ( X0_13=constB191 ) ) | ( ( X0_13=constB190 ) ) | ( ( X0_13=constB189 ) ) | ( ( X0_13=constB188 ) ) | ( ( X0_13=constB187 ) ) | ( ( X0_13=constB186 ) ) | ( ( X0_13=constB185 ) ) | ( ( X0_13=constB184 ) ) | ( ( X0_13=constB183 ) ) | ( ( X0_13=constB182 ) ) | ( ( X0_13=constB181 ) ) | ( ( X0_13=constB180 ) ) | ( ( X0_13=constB179 ) ) | ( ( X0_13=constB178 ) ) | ( ( X0_13=constB177 ) ) | ( ( X0_13=constB176 ) ) | ( ( X0_13=constB175 ) ) | ( ( X0_13=constB174 ) ) | ( ( X0_13=constB173 ) ) | ( ( X0_13=constB172 ) ) | ( ( X0_13=constB171 ) ) | ( ( X0_13=constB170 ) ) | ( ( X0_13=constB169 ) ) | ( ( X0_13=constB168 ) ) | ( ( X0_13=constB167 ) ) | ( ( X0_13=constB166 ) ) | ( ( X0_13=constB165 ) ) | ( ( X0_13=constB164 ) ) | ( ( X0_13=constB163 ) ) | ( ( X0_13=constB162 ) ) | ( ( X0_13=constB161 ) ) | ( ( X0_13=constB160 ) ) | ( ( X0_13=constB159 ) ) | ( ( X0_13=constB158 ) ) | ( ( X0_13=constB157 ) ) | ( ( X0_13=constB156 ) ) | ( ( X0_13=constB155 ) ) | ( ( X0_13=constB154 ) ) | ( ( X0_13=constB153 ) ) | ( ( X0_13=constB152 ) ) | ( ( X0_13=constB151 ) ) | ( ( X0_13=constB150 ) ) | ( ( X0_13=constB149 ) ) | ( ( X0_13=constB148 ) ) | ( ( X0_13=constB147 ) ) | ( ( X0_13=constB146 ) ) | ( ( X0_13=constB145 ) ) | ( ( X0_13=constB144 ) ) | ( ( X0_13=constB143 ) ) | ( ( X0_13=constB142 ) ) | ( ( X0_13=constB141 ) ) | ( ( X0_13=constB140 ) ) | ( ( X0_13=constB139 ) ) | ( ( X0_13=constB138 ) ) | ( ( X0_13=constB137 ) ) | ( ( X0_13=constB136 ) ) | ( ( X0_13=constB135 ) ) | ( ( X0_13=constB134 ) ) | ( ( X0_13=constB133 ) ) | ( ( X0_13=constB132 ) ) | ( ( X0_13=constB131 ) ) | ( ( X0_13=constB130 ) ) | ( ( X0_13=constB129 ) ) | ( ( X0_13=constB128 ) ) | ( ( X0_13=constB127 ) ) | ( ( X0_13=constB126 ) ) | ( ( X0_13=constB125 ) ) | ( ( X0_13=constB124 ) ) | ( ( X0_13=constB123 ) ) | ( ( X0_13=constB122 ) ) | ( ( X0_13=constB121 ) ) | ( ( X0_13=constB120 ) ) | ( ( X0_13=constB119 ) ) | ( ( X0_13=constB118 ) ) | ( ( X0_13=constB117 ) ) | ( ( X0_13=constB116 ) ) | ( ( X0_13=constB115 ) ) | ( ( X0_13=constB114 ) ) | ( ( X0_13=constB113 ) ) | ( ( X0_13=constB112 ) ) | ( ( X0_13=constB111 ) ) | ( ( X0_13=constB110 ) ) | ( ( X0_13=constB109 ) ) | ( ( X0_13=constB108 ) ) | ( ( X0_13=constB107 ) ) | ( ( X0_13=constB106 ) ) | ( ( X0_13=constB105 ) ) | ( ( X0_13=constB104 ) ) | ( ( X0_13=constB103 ) ) | ( ( X0_13=constB102 ) ) | ( ( X0_13=constB101 ) ) | ( ( X0_13=constB100 ) ) | ( ( X0_13=constB99 ) ) | ( ( X0_13=constB98 ) ) | ( ( X0_13=constB97 ) ) | ( ( X0_13=constB96 ) ) | ( ( X0_13=constB95 ) ) | ( ( X0_13=constB94 ) ) | ( ( X0_13=constB93 ) ) | ( ( X0_13=constB92 ) ) | ( ( X0_13=constB91 ) ) | ( ( X0_13=constB90 ) ) | ( ( X0_13=constB89 ) ) | ( ( X0_13=constB88 ) ) | ( ( X0_13=constB87 ) ) | ( ( X0_13=constB86 ) ) | ( ( X0_13=constB85 ) ) | ( ( X0_13=constB84 ) ) | ( ( X0_13=constB83 ) ) | ( ( X0_13=constB82 ) ) | ( ( X0_13=constB81 ) ) | ( ( X0_13=constB80 ) ) | ( ( X0_13=constB79 ) ) | ( ( X0_13=constB78 ) ) | ( ( X0_13=constB77 ) ) | ( ( X0_13=constB76 ) ) | ( ( X0_13=constB75 ) ) | ( ( X0_13=constB74 ) ) | ( ( X0_13=constB73 ) ) | ( ( X0_13=constB72 ) ) | ( ( X0_13=constB71 ) ) | ( ( X0_13=constB70 ) ) | ( ( X0_13=constB69 ) ) | ( ( X0_13=constB68 ) ) | ( ( X0_13=constB67 ) ) | ( ( X0_13=constB66 ) ) | ( ( X0_13=constB65 ) ) | ( ( X0_13=constB64 ) ) | ( ( X0_13=constB63 ) ) | ( ( X0_13=constB62 ) ) | ( ( X0_13=constB61 ) ) | ( ( X0_13=constB60 ) ) | ( ( X0_13=constB59 ) ) | ( ( X0_13=constB58 ) ) | ( ( X0_13=constB57 ) ) | ( ( X0_13=constB56 ) ) | ( ( X0_13=constB55 ) ) | ( ( X0_13=constB54 ) ) | ( ( X0_13=constB53 ) ) | ( ( X0_13=constB52 ) ) | ( ( X0_13=constB51 ) ) | ( ( X0_13=constB50 ) ) | ( ( X0_13=constB49 ) ) | ( ( X0_13=constB48 ) ) | ( ( X0_13=constB47 ) ) | ( ( X0_13=constB46 ) ) | ( ( X0_13=constB45 ) ) | ( ( X0_13=constB44 ) ) | ( ( X0_13=constB43 ) ) | ( ( X0_13=constB42 ) ) | ( ( X0_13=constB41 ) ) | ( ( X0_13=constB40 ) ) | ( ( X0_13=constB39 ) ) | ( ( X0_13=constB38 ) ) | ( ( X0_13=constB37 ) ) | ( ( X0_13=constB36 ) ) | ( ( X0_13=constB35 ) ) | ( ( X0_13=constB34 ) ) | ( ( X0_13=constB33 ) ) | ( ( X0_13=constB32 ) ) | ( ( X0_13=constB31 ) ) | ( ( X0_13=constB30 ) ) | ( ( X0_13=constB29 ) ) | ( ( X0_13=constB28 ) ) | ( ( X0_13=constB27 ) ) | ( ( X0_13=constB26 ) ) | ( ( X0_13=constB25 ) ) | ( ( X0_13=constB24 ) ) | ( ( X0_13=constB23 ) ) | ( ( X0_13=constB22 ) ) | ( ( X0_13=constB21 ) ) | ( ( X0_13=constB20 ) ) | ( ( X0_13=constB19 ) ) | ( ( X0_13=constB18 ) ) | ( ( X0_13=constB17 ) ) | ( ( X0_13=constB16 ) ) | ( ( X0_13=constB15 ) ) | ( ( X0_13=constB14 ) ) | ( ( X0_13=constB13 ) ) | ( ( X0_13=constB12 ) ) | ( ( X0_13=constB11 ) ) | ( ( X0_13=constB10 ) ) | ( ( X0_13=constB9 ) ) | ( ( X0_13=constB8 ) ) | ( ( X0_13=constB7 ) ) | ( ( X0_13=constB6 ) ) | ( ( X0_13=constB5 ) ) | ( ( X0_13=constB4 ) ) | ( ( X0_13=constB3 ) ) | ( ( X0_13=constB2 ) ) | ( ( X0_13=sK0 ) ) ) ) ) ). %------ Positive definition of v120 fof(lit_def,axiom, (! [X0_13] : ( v120(X0_13) <=> ( ( ( X0_13=constB197 ) ) | ( ( X0_13=constB196 ) ) | ( ( X0_13=constB187 ) ) | ( ( X0_13=constB186 ) ) | ( ( X0_13=constB177 ) ) | ( ( X0_13=constB176 ) ) | ( ( X0_13=constB167 ) ) | ( ( X0_13=constB166 ) ) | ( ( X0_13=constB157 ) ) | ( ( X0_13=constB156 ) ) | ( ( X0_13=constB147 ) ) | ( ( X0_13=constB146 ) ) | ( ( X0_13=constB137 ) ) | ( ( X0_13=constB136 ) ) | ( ( X0_13=constB127 ) ) | ( ( X0_13=constB126 ) ) | ( ( X0_13=constB117 ) ) | ( ( X0_13=constB116 ) ) | ( ( X0_13=constB107 ) ) | ( ( X0_13=constB106 ) ) | ( ( X0_13=constB97 ) ) | ( ( X0_13=constB96 ) ) | ( ( X0_13=constB87 ) ) | ( ( X0_13=constB86 ) ) | ( ( X0_13=constB77 ) ) | ( ( X0_13=constB76 ) ) | ( ( X0_13=constB67 ) ) | ( ( X0_13=constB66 ) ) | ( ( X0_13=constB57 ) ) | ( ( X0_13=constB56 ) ) | ( ( X0_13=constB47 ) ) | ( ( X0_13=constB46 ) ) | ( ( X0_13=constB37 ) ) | ( ( X0_13=constB36 ) ) | ( ( X0_13=constB27 ) ) | ( ( X0_13=constB26 ) ) | ( ( X0_13=constB17 ) ) | ( ( X0_13=constB16 ) ) | ( ( X0_13=constB7 ) ) | ( ( X0_13=constB6 ) ) ) ) ) ). %------ Positive definition of v121 fof(lit_def,axiom, (! [X0_13] : ( v121(X0_13) <=> ( ( ( X0_13=constB199 ) ) | ( ( X0_13=constB198 ) ) | ( ( X0_13=constB189 ) ) | ( ( X0_13=constB188 ) ) | ( ( X0_13=constB179 ) ) | ( ( X0_13=constB178 ) ) | ( ( X0_13=constB169 ) ) | ( ( X0_13=constB168 ) ) | ( ( X0_13=constB159 ) ) | ( ( X0_13=constB158 ) ) | ( ( X0_13=constB149 ) ) | ( ( X0_13=constB148 ) ) | ( ( X0_13=constB139 ) ) | ( ( X0_13=constB138 ) ) | ( ( X0_13=constB129 ) ) | ( ( X0_13=constB128 ) ) | ( ( X0_13=constB119 ) ) | ( ( X0_13=constB118 ) ) | ( ( X0_13=constB109 ) ) | ( ( X0_13=constB108 ) ) | ( ( X0_13=constB99 ) ) | ( ( X0_13=constB98 ) ) | ( ( X0_13=constB89 ) ) | ( ( X0_13=constB88 ) ) | ( ( X0_13=constB79 ) ) | ( ( X0_13=constB78 ) ) | ( ( X0_13=constB69 ) ) | ( ( X0_13=constB68 ) ) | ( ( X0_13=constB59 ) ) | ( ( X0_13=constB58 ) ) | ( ( X0_13=constB49 ) ) | ( ( X0_13=constB48 ) ) | ( ( X0_13=constB39 ) ) | ( ( X0_13=constB38 ) ) | ( ( X0_13=constB29 ) ) | ( ( X0_13=constB28 ) ) | ( ( X0_13=constB19 ) ) | ( ( X0_13=constB18 ) ) | ( ( X0_13=constB9 ) ) | ( ( X0_13=constB8 ) ) ) ) ) ). %------ Positive definition of v122 fof(lit_def,axiom, (! [X0_13] : ( v122(X0_13) <=> ( ( ( X0_13=constB200 ) ) | ( ( X0_13=constB191 ) ) | ( ( X0_13=constB190 ) ) | ( ( X0_13=constB181 ) ) | ( ( X0_13=constB180 ) ) | ( ( X0_13=constB171 ) ) | ( ( X0_13=constB170 ) ) | ( ( X0_13=constB161 ) ) | ( ( X0_13=constB160 ) ) | ( ( X0_13=constB151 ) ) | ( ( X0_13=constB150 ) ) | ( ( X0_13=constB141 ) ) | ( ( X0_13=constB140 ) ) | ( ( X0_13=constB131 ) ) | ( ( X0_13=constB130 ) ) | ( ( X0_13=constB121 ) ) | ( ( X0_13=constB120 ) ) | ( ( X0_13=constB111 ) ) | ( ( X0_13=constB110 ) ) | ( ( X0_13=constB101 ) ) | ( ( X0_13=constB100 ) ) | ( ( X0_13=constB91 ) ) | ( ( X0_13=constB90 ) ) | ( ( X0_13=constB81 ) ) | ( ( X0_13=constB80 ) ) | ( ( X0_13=constB71 ) ) | ( ( X0_13=constB70 ) ) | ( ( X0_13=constB61 ) ) | ( ( X0_13=constB60 ) ) | ( ( X0_13=constB51 ) ) | ( ( X0_13=constB50 ) ) | ( ( X0_13=constB41 ) ) | ( ( X0_13=constB40 ) ) | ( ( X0_13=constB31 ) ) | ( ( X0_13=constB30 ) ) | ( ( X0_13=constB21 ) ) | ( ( X0_13=constB20 ) ) | ( ( X0_13=constB11 ) ) | ( ( X0_13=constB10 ) ) ) ) ) ). %------ Positive definition of v123 fof(lit_def,axiom, (! [X0_13] : ( v123(X0_13) <=> ( ( ( X0_13=constB193 ) ) | ( ( X0_13=constB192 ) ) | ( ( X0_13=constB183 ) ) | ( ( X0_13=constB182 ) ) | ( ( X0_13=constB173 ) ) | ( ( X0_13=constB172 ) ) | ( ( X0_13=constB163 ) ) | ( ( X0_13=constB162 ) ) | ( ( X0_13=constB153 ) ) | ( ( X0_13=constB152 ) ) | ( ( X0_13=constB143 ) ) | ( ( X0_13=constB142 ) ) | ( ( X0_13=constB133 ) ) | ( ( X0_13=constB132 ) ) | ( ( X0_13=constB123 ) ) | ( ( X0_13=constB122 ) ) | ( ( X0_13=constB113 ) ) | ( ( X0_13=constB112 ) ) | ( ( X0_13=constB103 ) ) | ( ( X0_13=constB102 ) ) | ( ( X0_13=constB93 ) ) | ( ( X0_13=constB92 ) ) | ( ( X0_13=constB83 ) ) | ( ( X0_13=constB82 ) ) | ( ( X0_13=constB73 ) ) | ( ( X0_13=constB72 ) ) | ( ( X0_13=constB63 ) ) | ( ( X0_13=constB62 ) ) | ( ( X0_13=constB53 ) ) | ( ( X0_13=constB52 ) ) | ( ( X0_13=constB43 ) ) | ( ( X0_13=constB42 ) ) | ( ( X0_13=constB33 ) ) | ( ( X0_13=constB32 ) ) | ( ( X0_13=constB23 ) ) | ( ( X0_13=constB22 ) ) | ( ( X0_13=constB13 ) ) | ( ( X0_13=constB12 ) ) | ( ( X0_13=constB3 ) ) | ( ( X0_13=constB2 ) ) ) ) ) ). %------ Negative definition of v115 fof(lit_def,axiom, (! [X0_13] : ( ~(v115(X0_13)) <=> ( ( ( X0_13=constB195 ) ) | ( ( X0_13=constB194 ) ) | ( ( X0_13=constB185 ) ) | ( ( X0_13=constB184 ) ) | ( ( X0_13=constB175 ) ) | ( ( X0_13=constB174 ) ) | ( ( X0_13=constB165 ) ) | ( ( X0_13=constB164 ) ) | ( ( X0_13=constB155 ) ) | ( ( X0_13=constB154 ) ) | ( ( X0_13=constB145 ) ) | ( ( X0_13=constB144 ) ) | ( ( X0_13=constB135 ) ) | ( ( X0_13=constB134 ) ) | ( ( X0_13=constB125 ) ) | ( ( X0_13=constB124 ) ) | ( ( X0_13=constB115 ) ) | ( ( X0_13=constB114 ) ) | ( ( X0_13=constB105 ) ) | ( ( X0_13=constB104 ) ) | ( ( X0_13=constB95 ) ) | ( ( X0_13=constB94 ) ) | ( ( X0_13=constB85 ) ) | ( ( X0_13=constB84 ) ) | ( ( X0_13=constB75 ) ) | ( ( X0_13=constB74 ) ) | ( ( X0_13=constB65 ) ) | ( ( X0_13=constB64 ) ) | ( ( X0_13=constB55 ) ) | ( ( X0_13=constB54 ) ) | ( ( X0_13=constB45 ) ) | ( ( X0_13=constB44 ) ) | ( ( X0_13=constB35 ) ) | ( ( X0_13=constB34 ) ) | ( ( X0_13=constB25 ) ) | ( ( X0_13=constB24 ) ) | ( ( X0_13=constB15 ) ) | ( ( X0_13=constB14 ) ) | ( ( X0_13=constB5 ) ) | ( ( X0_13=constB4 ) ) | ( ( X0_13=sK0 ) ) ) ) ) ). %------ Positive definition of v124 fof(lit_def,axiom, (! [X0_13] : ( v124(X0_13) <=>$false
)
)
).

%------ Negative definition of v108
fof(lit_def,axiom,
(! [X0_13] :
( ~(v108(X0_13)) <=>
$false ) ) ). %------ Negative definition of v110 fof(lit_def,axiom, (! [X0_13] : ( ~(v110(X0_13)) <=>$false
)
)
).

%------ Positive definition of v100
fof(lit_def,axiom,
(! [X0_13] :
( v100(X0_13) <=>
(
(
( X0_13=constB200 )
)

|
(
( X0_13=constB198 )
)

|
(
( X0_13=constB196 )
)

|
(
( X0_13=constB194 )
)

|
(
( X0_13=constB192 )
)

|
(
( X0_13=constB190 )
)

|
(
( X0_13=constB188 )
)

|
(
( X0_13=constB186 )
)

|
(
( X0_13=constB184 )
)

|
(
( X0_13=constB182 )
)

|
(
( X0_13=constB180 )
)

|
(
( X0_13=constB178 )
)

|
(
( X0_13=constB176 )
)

|
(
( X0_13=constB174 )
)

|
(
( X0_13=constB172 )
)

|
(
( X0_13=constB170 )
)

|
(
( X0_13=constB168 )
)

|
(
( X0_13=constB166 )
)

|
(
( X0_13=constB164 )
)

|
(
( X0_13=constB162 )
)

|
(
( X0_13=constB160 )
)

|
(
( X0_13=constB158 )
)

|
(
( X0_13=constB156 )
)

|
(
( X0_13=constB154 )
)

|
(
( X0_13=constB152 )
)

|
(
( X0_13=constB150 )
)

|
(
( X0_13=constB148 )
)

|
(
( X0_13=constB146 )
)

|
(
( X0_13=constB144 )
)

|
(
( X0_13=constB142 )
)

|
(
( X0_13=constB140 )
)

|
(
( X0_13=constB138 )
)

|
(
( X0_13=constB136 )
)

|
(
( X0_13=constB134 )
)

|
(
( X0_13=constB132 )
)

|
(
( X0_13=constB130 )
)

|
(
( X0_13=constB128 )
)

|
(
( X0_13=constB126 )
)

|
(
( X0_13=constB124 )
)

|
(
( X0_13=constB122 )
)

|
(
( X0_13=constB120 )
)

|
(
( X0_13=constB118 )
)

|
(
( X0_13=constB116 )
)

|
(
( X0_13=constB114 )
)

|
(
( X0_13=constB112 )
)

|
(
( X0_13=constB110 )
)

|
(
( X0_13=constB108 )
)

|
(
( X0_13=constB106 )
)

|
(
( X0_13=constB104 )
)

|
(
( X0_13=constB102 )
)

|
(
( X0_13=constB100 )
)

|
(
( X0_13=constB98 )
)

|
(
( X0_13=constB96 )
)

|
(
( X0_13=constB94 )
)

|
(
( X0_13=constB92 )
)

|
(
( X0_13=constB90 )
)

|
(
( X0_13=constB88 )
)

|
(
( X0_13=constB86 )
)

|
(
( X0_13=constB84 )
)

|
(
( X0_13=constB82 )
)

|
(
( X0_13=constB80 )
)

|
(
( X0_13=constB78 )
)

|
(
( X0_13=constB76 )
)

|
(
( X0_13=constB74 )
)

|
(
( X0_13=constB72 )
)

|
(
( X0_13=constB70 )
)

|
(
( X0_13=constB68 )
)

|
(
( X0_13=constB66 )
)

|
(
( X0_13=constB64 )
)

|
(
( X0_13=constB62 )
)

|
(
( X0_13=constB60 )
)

|
(
( X0_13=constB58 )
)

|
(
( X0_13=constB56 )
)

|
(
( X0_13=constB54 )
)

|
(
( X0_13=constB52 )
)

|
(
( X0_13=constB50 )
)

|
(
( X0_13=constB48 )
)

|
(
( X0_13=constB46 )
)

|
(
( X0_13=constB44 )
)

|
(
( X0_13=constB42 )
)

|
(
( X0_13=constB40 )
)

|
(
( X0_13=constB38 )
)

|
(
( X0_13=constB36 )
)

|
(
( X0_13=constB34 )
)

|
(
( X0_13=constB32 )
)

|
(
( X0_13=constB30 )
)

|
(
( X0_13=constB28 )
)

|
(
( X0_13=constB26 )
)

|
(
( X0_13=constB24 )
)

|
(
( X0_13=constB22 )
)

|
(
( X0_13=constB20 )
)

|
(
( X0_13=constB18 )
)

|
(
( X0_13=constB16 )
)

|
(
( X0_13=constB14 )
)

|
(
( X0_13=constB12 )
)

|
(
( X0_13=constB10 )
)

|
(
( X0_13=constB8 )
)

|
(
( X0_13=constB6 )
)

|
(
( X0_13=constB4 )
)

|
(
( X0_13=constB2 )
)

)
)
)
).

%------ Positive definition of v130
fof(lit_def,axiom,
(! [X0_13,X0_15] :
( v130(X0_13,X0_15) <=>
(
(
( X0_13=constB200 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB199 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB199 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB198 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB198 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB197 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB196 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB195 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB194 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB193 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB193 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB192 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB192 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB191 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB190 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB189 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB189 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB188 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB188 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB187 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB186 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB185 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB184 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB183 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB183 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB182 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB182 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB181 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB180 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB179 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB179 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB178 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB178 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB177 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB176 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB175 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB174 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB173 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB173 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB172 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB172 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB171 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB170 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB169 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB169 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB168 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB168 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB167 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB166 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB165 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB164 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB163 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB163 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB162 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB162 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB161 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB160 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB159 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB159 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB158 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB158 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB157 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB156 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB155 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB154 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB153 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB153 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB152 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB152 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB151 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB150 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB149 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB149 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB148 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB148 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB147 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB146 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB145 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB144 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB143 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB143 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB142 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB142 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB141 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB140 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB139 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB139 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB138 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB138 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB137 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB136 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB135 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB134 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB133 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB133 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB132 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB132 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB131 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB130 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB129 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB129 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB128 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB128 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB127 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB126 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB125 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB124 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB123 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB123 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB122 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB122 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB121 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB120 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB119 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB119 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB118 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB118 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB117 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB116 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB115 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB114 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB113 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB113 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB112 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB112 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB111 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB110 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB109 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB109 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB108 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB108 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB107 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB106 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB105 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB104 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB103 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB103 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB102 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB102 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB101 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB100 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB99 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB99 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB98 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB98 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB97 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB96 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB95 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB94 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB93 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB93 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB92 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB92 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB91 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB90 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB89 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB89 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB88 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB88 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB87 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB86 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB85 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB84 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB83 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB83 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB82 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB82 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB81 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB80 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB79 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB79 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB78 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB78 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB77 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB76 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB75 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB74 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB73 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB73 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB72 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB72 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB71 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB70 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB69 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB69 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB68 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB68 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB67 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB66 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB65 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB64 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB63 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB63 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB62 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB62 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB61 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB60 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB59 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB59 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB58 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB58 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB57 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB56 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB55 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB54 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB53 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB53 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB52 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB52 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB51 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB50 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB49 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB49 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB48 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB48 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB47 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB46 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB45 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB44 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB43 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB43 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB42 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB42 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB41 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB40 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB39 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB39 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB38 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB38 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB37 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB36 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB35 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB34 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB33 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB33 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB32 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB32 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB31 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB30 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB29 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB29 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB28 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB28 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB27 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB26 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB25 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB24 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB23 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB23 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB22 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB22 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB21 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB20 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB19 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB19 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB18 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB18 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB17 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB16 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB15 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB14 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB13 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB13 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB12 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB12 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB11 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB10 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB9 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB9 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB8 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB8 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB7 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB6 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB5 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB4 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB3 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB3 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB2 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB2 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB1 & X0_15=bitIndex2 )
)

|
(
( X0_13=sK0 & X0_15=bitIndex0 )
)

|
(
( X0_15=bitIndex2 )
&
( X0_13!=constB200 )
&
( X0_13!=constB199 )
&
( X0_13!=constB198 )
&
( X0_13!=constB197 )
&
( X0_13!=constB196 )
&
( X0_13!=constB195 )
&
( X0_13!=constB194 )
&
( X0_13!=constB193 )
&
( X0_13!=constB192 )
&
( X0_13!=constB191 )
&
( X0_13!=constB190 )
&
( X0_13!=constB189 )
&
( X0_13!=constB188 )
&
( X0_13!=constB187 )
&
( X0_13!=constB186 )
&
( X0_13!=constB185 )
&
( X0_13!=constB184 )
&
( X0_13!=constB183 )
&
( X0_13!=constB182 )
&
( X0_13!=constB181 )
&
( X0_13!=constB180 )
&
( X0_13!=constB179 )
&
( X0_13!=constB178 )
&
( X0_13!=constB177 )
&
( X0_13!=constB176 )
&
( X0_13!=constB175 )
&
( X0_13!=constB174 )
&
( X0_13!=constB173 )
&
( X0_13!=constB172 )
&
( X0_13!=constB171 )
&
( X0_13!=constB170 )
&
( X0_13!=constB169 )
&
( X0_13!=constB168 )
&
( X0_13!=constB167 )
&
( X0_13!=constB166 )
&
( X0_13!=constB165 )
&
( X0_13!=constB164 )
&
( X0_13!=constB163 )
&
( X0_13!=constB162 )
&
( X0_13!=constB161 )
&
( X0_13!=constB160 )
&
( X0_13!=constB159 )
&
( X0_13!=constB158 )
&
( X0_13!=constB157 )
&
( X0_13!=constB156 )
&
( X0_13!=constB155 )
&
( X0_13!=constB154 )
&
( X0_13!=constB153 )
&
( X0_13!=constB152 )
&
( X0_13!=constB151 )
&
( X0_13!=constB150 )
&
( X0_13!=constB149 )
&
( X0_13!=constB148 )
&
( X0_13!=constB147 )
&
( X0_13!=constB146 )
&
( X0_13!=constB145 )
&
( X0_13!=constB144 )
&
( X0_13!=constB143 )
&
( X0_13!=constB142 )
&
( X0_13!=constB141 )
&
( X0_13!=constB140 )
&
( X0_13!=constB139 )
&
( X0_13!=constB138 )
&
( X0_13!=constB137 )
&
( X0_13!=constB136 )
&
( X0_13!=constB135 )
&
( X0_13!=constB134 )
&
( X0_13!=constB133 )
&
( X0_13!=constB132 )
&
( X0_13!=constB131 )
&
( X0_13!=constB130 )
&
( X0_13!=constB129 )
&
( X0_13!=constB128 )
&
( X0_13!=constB127 )
&
( X0_13!=constB126 )
&
( X0_13!=constB125 )
&
( X0_13!=constB124 )
&
( X0_13!=constB123 )
&
( X0_13!=constB122 )
&
( X0_13!=constB121 )
&
( X0_13!=constB120 )
&
( X0_13!=constB119 )
&
( X0_13!=constB118 )
&
( X0_13!=constB117 )
&
( X0_13!=constB116 )
&
( X0_13!=constB115 )
&
( X0_13!=constB114 )
&
( X0_13!=constB113 )
&
( X0_13!=constB112 )
&
( X0_13!=constB111 )
&
( X0_13!=constB110 )
&
( X0_13!=constB109 )
&
( X0_13!=constB108 )
&
( X0_13!=constB107 )
&
( X0_13!=constB106 )
&
( X0_13!=constB105 )
&
( X0_13!=constB104 )
&
( X0_13!=constB103 )
&
( X0_13!=constB102 )
&
( X0_13!=constB101 )
&
( X0_13!=constB100 )
&
( X0_13!=constB99 )
&
( X0_13!=constB98 )
&
( X0_13!=constB97 )
&
( X0_13!=constB96 )
&
( X0_13!=constB95 )
&
( X0_13!=constB94 )
&
( X0_13!=constB93 )
&
( X0_13!=constB92 )
&
( X0_13!=constB91 )
&
( X0_13!=constB90 )
&
( X0_13!=constB89 )
&
( X0_13!=constB88 )
&
( X0_13!=constB87 )
&
( X0_13!=constB86 )
&
( X0_13!=constB85 )
&
( X0_13!=constB84 )
&
( X0_13!=constB83 )
&
( X0_13!=constB82 )
&
( X0_13!=constB81 )
&
( X0_13!=constB80 )
&
( X0_13!=constB79 )
&
( X0_13!=constB78 )
&
( X0_13!=constB77 )
&
( X0_13!=constB76 )
&
( X0_13!=constB75 )
&
( X0_13!=constB74 )
&
( X0_13!=constB73 )
&
( X0_13!=constB72 )
&
( X0_13!=constB71 )
&
( X0_13!=constB70 )
&
( X0_13!=constB69 )
&
( X0_13!=constB68 )
&
( X0_13!=constB67 )
&
( X0_13!=constB66 )
&
( X0_13!=constB65 )
&
( X0_13!=constB64 )
&
( X0_13!=constB63 )
&
( X0_13!=constB62 )
&
( X0_13!=constB61 )
&
( X0_13!=constB60 )
&
( X0_13!=constB59 )
&
( X0_13!=constB58 )
&
( X0_13!=constB57 )
&
( X0_13!=constB56 )
&
( X0_13!=constB55 )
&
( X0_13!=constB54 )
&
( X0_13!=constB53 )
&
( X0_13!=constB52 )
&
( X0_13!=constB51 )
&
( X0_13!=constB50 )
&
( X0_13!=constB49 )
&
( X0_13!=constB48 )
&
( X0_13!=constB47 )
&
( X0_13!=constB46 )
&
( X0_13!=constB45 )
&
( X0_13!=constB44 )
&
( X0_13!=constB43 )
&
( X0_13!=constB42 )
&
( X0_13!=constB41 )
&
( X0_13!=constB40 )
&
( X0_13!=constB39 )
&
( X0_13!=constB38 )
&
( X0_13!=constB37 )
&
( X0_13!=constB36 )
&
( X0_13!=constB35 )
&
( X0_13!=constB34 )
&
( X0_13!=constB33 )
&
( X0_13!=constB32 )
&
( X0_13!=constB31 )
&
( X0_13!=constB30 )
&
( X0_13!=constB29 )
&
( X0_13!=constB28 )
&
( X0_13!=constB27 )
&
( X0_13!=constB26 )
&
( X0_13!=constB25 )
&
( X0_13!=constB24 )
&
( X0_13!=constB23 )
&
( X0_13!=constB22 )
&
( X0_13!=constB21 )
&
( X0_13!=constB20 )
&
( X0_13!=constB19 )
&
( X0_13!=constB18 )
&
( X0_13!=constB17 )
&
( X0_13!=constB16 )
&
( X0_13!=constB15 )
&
( X0_13!=constB14 )
&
( X0_13!=constB13 )
&
( X0_13!=constB12 )
&
( X0_13!=constB11 )
&
( X0_13!=constB10 )
&
( X0_13!=constB9 )
&
( X0_13!=constB8 )
&
( X0_13!=constB7 )
&
( X0_13!=constB6 )
&
( X0_13!=constB5 )
&
( X0_13!=constB4 )
&
( X0_13!=constB3 )
&
( X0_13!=constB2 )
&
( X0_13!=constB1 )
&
( X0_13!=sK0 )
)

)
)
)
).

%------ Positive definition of v127
fof(lit_def,axiom,
(! [X0_13,X0_15] :
( v127(X0_13,X0_15) <=>
(
(
( X0_13=constB200 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB199 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB199 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB198 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB198 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB197 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB196 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB195 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB194 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB193 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB193 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB192 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB192 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB191 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB190 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB189 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB189 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB188 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB188 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB187 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB186 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB185 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB184 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB183 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB183 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB182 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB182 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB181 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB180 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB179 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB179 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB178 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB178 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB177 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB176 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB175 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB174 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB173 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB173 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB172 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB172 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB171 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB170 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB169 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB169 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB168 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB168 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB167 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB166 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB165 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB164 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB163 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB163 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB162 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB162 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB161 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB160 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB159 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB159 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB158 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB158 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB157 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB156 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB155 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB154 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB153 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB153 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB152 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB152 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB151 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB150 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB149 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB149 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB148 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB148 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB147 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB146 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB145 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB144 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB143 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB143 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB142 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB142 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB141 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB140 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB139 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB139 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB138 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB138 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB137 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB136 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB135 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB134 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB133 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB133 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB132 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB132 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB131 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB130 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB129 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB129 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB128 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB128 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB127 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB126 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB125 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB124 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB123 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB123 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB122 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB122 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB121 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB120 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB119 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB119 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB118 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB118 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB117 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB116 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB115 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB114 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB113 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB113 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB112 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB112 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB111 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB110 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB109 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB109 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB108 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB108 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB107 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB106 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB105 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB104 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB103 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB103 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB102 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB102 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB101 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB100 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB99 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB99 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB98 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB98 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB97 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB96 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB95 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB94 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB93 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB93 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB92 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB92 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB91 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB90 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB89 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB89 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB88 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB88 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB87 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB86 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB85 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB84 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB83 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB83 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB82 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB82 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB81 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB80 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB79 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB79 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB78 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB78 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB77 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB76 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB75 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB74 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB73 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB73 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB72 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB72 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB71 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB70 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB69 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB69 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB68 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB68 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB67 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB66 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB65 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB64 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB63 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB63 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB62 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB62 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB61 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB60 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB59 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB59 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB58 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB58 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB57 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB56 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB55 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB54 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB53 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB53 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB52 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB52 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB51 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB50 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB49 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB49 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB48 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB48 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB47 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB46 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB45 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB44 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB43 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB43 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB42 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB42 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB41 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB40 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB39 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB39 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB38 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB38 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB37 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB36 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB35 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB34 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB33 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB33 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB32 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB32 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB31 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB30 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB29 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB29 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB28 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB28 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB27 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB26 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB25 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB24 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB23 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB23 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB22 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB22 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB21 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB20 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB19 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB19 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB18 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB18 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB17 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB16 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB15 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB14 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB13 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB13 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB12 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB12 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB11 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB10 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB9 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB9 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB8 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB8 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB7 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB6 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB5 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB4 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB3 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB3 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB2 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB2 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB1 & X0_15=bitIndex2 )
)

|
(
( X0_13=sK0 & X0_15=bitIndex0 )
)

|
(
( X0_15=bitIndex2 )
&
( X0_13!=constB200 )
&
( X0_13!=constB199 )
&
( X0_13!=constB198 )
&
( X0_13!=constB197 )
&
( X0_13!=constB196 )
&
( X0_13!=constB195 )
&
( X0_13!=constB194 )
&
( X0_13!=constB193 )
&
( X0_13!=constB192 )
&
( X0_13!=constB191 )
&
( X0_13!=constB190 )
&
( X0_13!=constB189 )
&
( X0_13!=constB188 )
&
( X0_13!=constB187 )
&
( X0_13!=constB186 )
&
( X0_13!=constB185 )
&
( X0_13!=constB184 )
&
( X0_13!=constB183 )
&
( X0_13!=constB182 )
&
( X0_13!=constB181 )
&
( X0_13!=constB180 )
&
( X0_13!=constB179 )
&
( X0_13!=constB178 )
&
( X0_13!=constB177 )
&
( X0_13!=constB176 )
&
( X0_13!=constB175 )
&
( X0_13!=constB174 )
&
( X0_13!=constB173 )
&
( X0_13!=constB172 )
&
( X0_13!=constB171 )
&
( X0_13!=constB170 )
&
( X0_13!=constB169 )
&
( X0_13!=constB168 )
&
( X0_13!=constB167 )
&
( X0_13!=constB166 )
&
( X0_13!=constB165 )
&
( X0_13!=constB164 )
&
( X0_13!=constB163 )
&
( X0_13!=constB162 )
&
( X0_13!=constB161 )
&
( X0_13!=constB160 )
&
( X0_13!=constB159 )
&
( X0_13!=constB158 )
&
( X0_13!=constB157 )
&
( X0_13!=constB156 )
&
( X0_13!=constB155 )
&
( X0_13!=constB154 )
&
( X0_13!=constB153 )
&
( X0_13!=constB152 )
&
( X0_13!=constB151 )
&
( X0_13!=constB150 )
&
( X0_13!=constB149 )
&
( X0_13!=constB148 )
&
( X0_13!=constB147 )
&
( X0_13!=constB146 )
&
( X0_13!=constB145 )
&
( X0_13!=constB144 )
&
( X0_13!=constB143 )
&
( X0_13!=constB142 )
&
( X0_13!=constB141 )
&
( X0_13!=constB140 )
&
( X0_13!=constB139 )
&
( X0_13!=constB138 )
&
( X0_13!=constB137 )
&
( X0_13!=constB136 )
&
( X0_13!=constB135 )
&
( X0_13!=constB134 )
&
( X0_13!=constB133 )
&
( X0_13!=constB132 )
&
( X0_13!=constB131 )
&
( X0_13!=constB130 )
&
( X0_13!=constB129 )
&
( X0_13!=constB128 )
&
( X0_13!=constB127 )
&
( X0_13!=constB126 )
&
( X0_13!=constB125 )
&
( X0_13!=constB124 )
&
( X0_13!=constB123 )
&
( X0_13!=constB122 )
&
( X0_13!=constB121 )
&
( X0_13!=constB120 )
&
( X0_13!=constB119 )
&
( X0_13!=constB118 )
&
( X0_13!=constB117 )
&
( X0_13!=constB116 )
&
( X0_13!=constB115 )
&
( X0_13!=constB114 )
&
( X0_13!=constB113 )
&
( X0_13!=constB112 )
&
( X0_13!=constB111 )
&
( X0_13!=constB110 )
&
( X0_13!=constB109 )
&
( X0_13!=constB108 )
&
( X0_13!=constB107 )
&
( X0_13!=constB106 )
&
( X0_13!=constB105 )
&
( X0_13!=constB104 )
&
( X0_13!=constB103 )
&
( X0_13!=constB102 )
&
( X0_13!=constB101 )
&
( X0_13!=constB100 )
&
( X0_13!=constB99 )
&
( X0_13!=constB98 )
&
( X0_13!=constB97 )
&
( X0_13!=constB96 )
&
( X0_13!=constB95 )
&
( X0_13!=constB94 )
&
( X0_13!=constB93 )
&
( X0_13!=constB92 )
&
( X0_13!=constB91 )
&
( X0_13!=constB90 )
&
( X0_13!=constB89 )
&
( X0_13!=constB88 )
&
( X0_13!=constB87 )
&
( X0_13!=constB86 )
&
( X0_13!=constB85 )
&
( X0_13!=constB84 )
&
( X0_13!=constB83 )
&
( X0_13!=constB82 )
&
( X0_13!=constB81 )
&
( X0_13!=constB80 )
&
( X0_13!=constB79 )
&
( X0_13!=constB78 )
&
( X0_13!=constB77 )
&
( X0_13!=constB76 )
&
( X0_13!=constB75 )
&
( X0_13!=constB74 )
&
( X0_13!=constB73 )
&
( X0_13!=constB72 )
&
( X0_13!=constB71 )
&
( X0_13!=constB70 )
&
( X0_13!=constB69 )
&
( X0_13!=constB68 )
&
( X0_13!=constB67 )
&
( X0_13!=constB66 )
&
( X0_13!=constB65 )
&
( X0_13!=constB64 )
&
( X0_13!=constB63 )
&
( X0_13!=constB62 )
&
( X0_13!=constB61 )
&
( X0_13!=constB60 )
&
( X0_13!=constB59 )
&
( X0_13!=constB58 )
&
( X0_13!=constB57 )
&
( X0_13!=constB56 )
&
( X0_13!=constB55 )
&
( X0_13!=constB54 )
&
( X0_13!=constB53 )
&
( X0_13!=constB52 )
&
( X0_13!=constB51 )
&
( X0_13!=constB50 )
&
( X0_13!=constB49 )
&
( X0_13!=constB48 )
&
( X0_13!=constB47 )
&
( X0_13!=constB46 )
&
( X0_13!=constB45 )
&
( X0_13!=constB44 )
&
( X0_13!=constB43 )
&
( X0_13!=constB42 )
&
( X0_13!=constB41 )
&
( X0_13!=constB40 )
&
( X0_13!=constB39 )
&
( X0_13!=constB38 )
&
( X0_13!=constB37 )
&
( X0_13!=constB36 )
&
( X0_13!=constB35 )
&
( X0_13!=constB34 )
&
( X0_13!=constB33 )
&
( X0_13!=constB32 )
&
( X0_13!=constB31 )
&
( X0_13!=constB30 )
&
( X0_13!=constB29 )
&
( X0_13!=constB28 )
&
( X0_13!=constB27 )
&
( X0_13!=constB26 )
&
( X0_13!=constB25 )
&
( X0_13!=constB24 )
&
( X0_13!=constB23 )
&
( X0_13!=constB22 )
&
( X0_13!=constB21 )
&
( X0_13!=constB20 )
&
( X0_13!=constB19 )
&
( X0_13!=constB18 )
&
( X0_13!=constB17 )
&
( X0_13!=constB16 )
&
( X0_13!=constB15 )
&
( X0_13!=constB14 )
&
( X0_13!=constB13 )
&
( X0_13!=constB12 )
&
( X0_13!=constB11 )
&
( X0_13!=constB10 )
&
( X0_13!=constB9 )
&
( X0_13!=constB8 )
&
( X0_13!=constB7 )
&
( X0_13!=constB6 )
&
( X0_13!=constB5 )
&
( X0_13!=constB4 )
&
( X0_13!=constB3 )
&
( X0_13!=constB2 )
&
( X0_13!=constB1 )
&
( X0_13!=sK0 )
)

)
)
)
).

%------ Positive definition of v129
fof(lit_def,axiom,
(! [X0_13,X0_15] :
( v129(X0_13,X0_15) <=>
(
(
( X0_13=constB200 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB200 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB199 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB199 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB198 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB197 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB196 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB195 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB194 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB194 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB193 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB193 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB192 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB191 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB190 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB190 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB189 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB189 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB188 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB187 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB186 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB185 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB184 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB184 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB183 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB183 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB182 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB181 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB180 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB180 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB179 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB179 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB178 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB177 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB176 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB175 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB174 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB174 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB173 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB173 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB172 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB171 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB170 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB170 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB169 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB169 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB168 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB167 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB166 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB165 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB164 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB164 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB163 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB163 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB162 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB161 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB160 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB160 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB159 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB159 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB158 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB157 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB156 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB155 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB154 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB154 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB153 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB153 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB152 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB151 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB150 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB150 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB149 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB149 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB148 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB147 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB146 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB145 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB144 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB144 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB143 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB143 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB142 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB141 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB140 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB140 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB139 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB139 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB138 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB137 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB136 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB135 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB134 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB134 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB133 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB133 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB132 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB131 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB130 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB130 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB129 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB129 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB128 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB127 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB126 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB125 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB124 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB124 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB123 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB123 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB122 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB121 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB120 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB120 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB119 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB119 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB118 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB117 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB116 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB115 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB114 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB114 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB113 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB113 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB112 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB111 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB110 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB110 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB109 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB109 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB108 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB107 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB106 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB105 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB104 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB104 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB103 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB103 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB102 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB101 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB100 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB100 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB99 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB99 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB98 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB97 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB96 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB95 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB94 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB94 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB93 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB93 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB92 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB91 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB90 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB90 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB89 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB89 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB88 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB87 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB86 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB85 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB84 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB84 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB83 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB83 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB82 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB81 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB80 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB80 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB79 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB79 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB78 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB77 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB76 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB75 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB74 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB74 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB73 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB73 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB72 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB71 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB70 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB70 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB69 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB69 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB68 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB67 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB66 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB65 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB64 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB64 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB63 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB63 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB62 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB61 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB60 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB60 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB59 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB59 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB58 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB57 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB56 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB55 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB54 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB54 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB53 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB53 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB52 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB51 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB50 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB50 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB49 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB49 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB48 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB47 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB46 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB45 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB44 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB44 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB43 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB43 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB42 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB41 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB40 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB40 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB39 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB39 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB38 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB37 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB36 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB35 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB34 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB34 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB33 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB33 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB32 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB31 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB30 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB30 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB29 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB29 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB28 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB27 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB26 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB25 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB24 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB24 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB23 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB23 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB22 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB21 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB20 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB20 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB19 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB19 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB18 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB17 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB16 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB15 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB14 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB14 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB13 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB13 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB12 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB11 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB10 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB10 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB9 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB9 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB8 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB7 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB6 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB5 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB4 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB4 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB3 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB3 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB2 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB1 & X0_15=bitIndex2 )
)

|
(
( X0_13=sK0 & X0_15=bitIndex0 )
)

)
)
)
).

%------ Positive definition of v88
fof(lit_def,axiom,
(! [X0_13,X0_15] :
( v88(X0_13,X0_15) <=>
(
(
( X0_13=constB200 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB200 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB199 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB198 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB197 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB196 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB195 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB195 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB194 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB194 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB193 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB192 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB191 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB191 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB190 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB190 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB189 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB188 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB187 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB186 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB185 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB185 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB184 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB184 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB183 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB182 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB181 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB181 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB180 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB180 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB179 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB178 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB177 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB176 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB175 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB175 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB174 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB174 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB173 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB172 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB171 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB171 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB170 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB170 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB169 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB168 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB167 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB166 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB165 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB165 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB164 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB164 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB163 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB162 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB161 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB161 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB160 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB160 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB159 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB158 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB157 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB156 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB155 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB155 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB154 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB154 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB153 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB152 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB151 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB151 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB150 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB150 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB149 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB148 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB147 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB146 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB145 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB145 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB144 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB144 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB143 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB142 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB141 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB141 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB140 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB140 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB139 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB138 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB137 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB136 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB135 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB135 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB134 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB134 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB133 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB132 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB131 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB131 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB130 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB130 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB129 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB128 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB127 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB126 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB125 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB125 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB124 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB124 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB123 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB122 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB121 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB121 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB120 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB120 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB119 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB118 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB117 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB116 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB115 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB115 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB114 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB114 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB113 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB112 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB111 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB111 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB110 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB110 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB109 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB108 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB107 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB106 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB105 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB105 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB104 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB104 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB103 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB102 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB101 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB101 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB100 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB100 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB99 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB98 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB97 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB96 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB95 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB95 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB94 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB94 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB93 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB92 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB91 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB91 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB90 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB90 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB89 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB88 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB87 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB86 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB85 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB85 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB84 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB84 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB83 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB82 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB81 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB81 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB80 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB80 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB79 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB78 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB77 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB76 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB75 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB75 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB74 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB74 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB73 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB72 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB71 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB71 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB70 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB70 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB69 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB68 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB67 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB66 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB65 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB65 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB64 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB64 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB63 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB62 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB61 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB61 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB60 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB60 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB59 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB58 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB57 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB56 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB55 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB55 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB54 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB54 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB53 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB52 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB51 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB51 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB50 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB50 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB49 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB48 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB47 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB46 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB45 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB45 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB44 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB44 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB43 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB42 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB41 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB41 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB40 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB40 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB39 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB38 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB37 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB36 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB35 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB35 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB34 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB34 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB33 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB32 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB31 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB31 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB30 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB30 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB29 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB28 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB27 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB26 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB25 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB25 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB24 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB24 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB23 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB22 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB21 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB21 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB20 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB20 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB19 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB18 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB17 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB16 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB15 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB15 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB14 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB14 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB13 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB12 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB11 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB11 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB10 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB10 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB9 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB8 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB7 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB6 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB5 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB5 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB4 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB4 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB3 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB2 & X0_15=bitIndex2 )
)

|
(
( X0_13=sK0 & X0_15=bitIndex1 )
)

|
(
( X0_13=sK0 & X0_15=bitIndex2 )
)

)
)
)
).

%------ Positive definition of v86
fof(lit_def,axiom,
(! [X0_13] :
( v86(X0_13) <=>
(
(
( X0_13=constB193 )
)

|
(
( X0_13=constB192 )
)

|
(
( X0_13=constB183 )
)

|
(
( X0_13=constB182 )
)

|
(
( X0_13=constB173 )
)

|
(
( X0_13=constB172 )
)

|
(
( X0_13=constB163 )
)

|
(
( X0_13=constB162 )
)

|
(
( X0_13=constB153 )
)

|
(
( X0_13=constB152 )
)

|
(
( X0_13=constB143 )
)

|
(
( X0_13=constB142 )
)

|
(
( X0_13=constB133 )
)

|
(
( X0_13=constB132 )
)

|
(
( X0_13=constB123 )
)

|
(
( X0_13=constB122 )
)

|
(
( X0_13=constB113 )
)

|
(
( X0_13=constB112 )
)

|
(
( X0_13=constB103 )
)

|
(
( X0_13=constB102 )
)

|
(
( X0_13=constB93 )
)

|
(
( X0_13=constB92 )
)

|
(
( X0_13=constB83 )
)

|
(
( X0_13=constB82 )
)

|
(
( X0_13=constB73 )
)

|
(
( X0_13=constB72 )
)

|
(
( X0_13=constB63 )
)

|
(
( X0_13=constB62 )
)

|
(
( X0_13=constB53 )
)

|
(
( X0_13=constB52 )
)

|
(
( X0_13=constB43 )
)

|
(
( X0_13=constB42 )
)

|
(
( X0_13=constB33 )
)

|
(
( X0_13=constB32 )
)

|
(
( X0_13=constB23 )
)

|
(
( X0_13=constB22 )
)

|
(
( X0_13=constB13 )
)

|
(
( X0_13=constB12 )
)

|
(
( X0_13=constB3 )
)

|
(
( X0_13=constB2 )
)

)
)
)
).

%------ Positive definition of v141
fof(lit_def,axiom,
(! [X0_13] :
( v141(X0_13) <=>
(
(
( X0_13=constB200 )
)

|
(
( X0_13=constB191 )
)

|
(
( X0_13=constB190 )
)

|
(
( X0_13=constB181 )
)

|
(
( X0_13=constB180 )
)

|
(
( X0_13=constB171 )
)

|
(
( X0_13=constB170 )
)

|
(
( X0_13=constB161 )
)

|
(
( X0_13=constB160 )
)

|
(
( X0_13=constB151 )
)

|
(
( X0_13=constB150 )
)

|
(
( X0_13=constB141 )
)

|
(
( X0_13=constB140 )
)

|
(
( X0_13=constB131 )
)

|
(
( X0_13=constB130 )
)

|
(
( X0_13=constB121 )
)

|
(
( X0_13=constB120 )
)

|
(
( X0_13=constB111 )
)

|
(
( X0_13=constB110 )
)

|
(
( X0_13=constB101 )
)

|
(
( X0_13=constB100 )
)

|
(
( X0_13=constB91 )
)

|
(
( X0_13=constB90 )
)

|
(
( X0_13=constB81 )
)

|
(
( X0_13=constB80 )
)

|
(
( X0_13=constB71 )
)

|
(
( X0_13=constB70 )
)

|
(
( X0_13=constB61 )
)

|
(
( X0_13=constB60 )
)

|
(
( X0_13=constB51 )
)

|
(
( X0_13=constB50 )
)

|
(
( X0_13=constB41 )
)

|
(
( X0_13=constB40 )
)

|
(
( X0_13=constB31 )
)

|
(
( X0_13=constB30 )
)

|
(
( X0_13=constB21 )
)

|
(
( X0_13=constB20 )
)

|
(
( X0_13=constB11 )
)

|
(
( X0_13=constB10 )
)

)
)
)
).

%------ Negative definition of v135
fof(lit_def,axiom,
(! [X0_13] :
( ~(v135(X0_13)) <=>
$false ) ) ). %------ Positive definition of v162 fof(lit_def,axiom, (! [X0_13] : ( v162(X0_13) <=> ( ( ( X0_13=constB200 ) ) | ( ( X0_13=constB191 ) ) | ( ( X0_13=constB190 ) ) | ( ( X0_13=constB181 ) ) | ( ( X0_13=constB180 ) ) | ( ( X0_13=constB171 ) ) | ( ( X0_13=constB170 ) ) | ( ( X0_13=constB161 ) ) | ( ( X0_13=constB160 ) ) | ( ( X0_13=constB151 ) ) | ( ( X0_13=constB150 ) ) | ( ( X0_13=constB141 ) ) | ( ( X0_13=constB140 ) ) | ( ( X0_13=constB131 ) ) | ( ( X0_13=constB130 ) ) | ( ( X0_13=constB121 ) ) | ( ( X0_13=constB120 ) ) | ( ( X0_13=constB111 ) ) | ( ( X0_13=constB110 ) ) | ( ( X0_13=constB101 ) ) | ( ( X0_13=constB100 ) ) | ( ( X0_13=constB91 ) ) | ( ( X0_13=constB90 ) ) | ( ( X0_13=constB81 ) ) | ( ( X0_13=constB80 ) ) | ( ( X0_13=constB71 ) ) | ( ( X0_13=constB70 ) ) | ( ( X0_13=constB61 ) ) | ( ( X0_13=constB60 ) ) | ( ( X0_13=constB51 ) ) | ( ( X0_13=constB50 ) ) | ( ( X0_13=constB41 ) ) | ( ( X0_13=constB40 ) ) | ( ( X0_13=constB31 ) ) | ( ( X0_13=constB30 ) ) | ( ( X0_13=constB21 ) ) | ( ( X0_13=constB20 ) ) | ( ( X0_13=constB11 ) ) | ( ( X0_13=constB10 ) ) ) ) ) ). %------ Negative definition of v165 fof(lit_def,axiom, (! [X0_13] : ( ~(v165(X0_13)) <=>$false
)
)
).

%------ Positive definition of v158
fof(lit_def,axiom,
(! [X0_13] :
( v158(X0_13) <=>
(
(
( X0_13=constB193 )
)

|
(
( X0_13=constB192 )
)

|
(
( X0_13=constB183 )
)

|
(
( X0_13=constB182 )
)

|
(
( X0_13=constB173 )
)

|
(
( X0_13=constB172 )
)

|
(
( X0_13=constB163 )
)

|
(
( X0_13=constB162 )
)

|
(
( X0_13=constB153 )
)

|
(
( X0_13=constB152 )
)

|
(
( X0_13=constB143 )
)

|
(
( X0_13=constB142 )
)

|
(
( X0_13=constB133 )
)

|
(
( X0_13=constB132 )
)

|
(
( X0_13=constB123 )
)

|
(
( X0_13=constB122 )
)

|
(
( X0_13=constB113 )
)

|
(
( X0_13=constB112 )
)

|
(
( X0_13=constB103 )
)

|
(
( X0_13=constB102 )
)

|
(
( X0_13=constB93 )
)

|
(
( X0_13=constB92 )
)

|
(
( X0_13=constB83 )
)

|
(
( X0_13=constB82 )
)

|
(
( X0_13=constB73 )
)

|
(
( X0_13=constB72 )
)

|
(
( X0_13=constB63 )
)

|
(
( X0_13=constB62 )
)

|
(
( X0_13=constB53 )
)

|
(
( X0_13=constB52 )
)

|
(
( X0_13=constB43 )
)

|
(
( X0_13=constB42 )
)

|
(
( X0_13=constB33 )
)

|
(
( X0_13=constB32 )
)

|
(
( X0_13=constB23 )
)

|
(
( X0_13=constB22 )
)

|
(
( X0_13=constB13 )
)

|
(
( X0_13=constB12 )
)

)
)
)
).

%------ Positive definition of v184
fof(lit_def,axiom,
(! [X0_13] :
( v184(X0_13) <=>
(
(
( X0_13=constB199 )
)

|
(
( X0_13=constB197 )
)

|
(
( X0_13=constB195 )
)

|
(
( X0_13=constB193 )
)

|
(
( X0_13=constB191 )
)

|
(
( X0_13=constB189 )
)

|
(
( X0_13=constB187 )
)

|
(
( X0_13=constB185 )
)

|
(
( X0_13=constB183 )
)

|
(
( X0_13=constB181 )
)

|
(
( X0_13=constB179 )
)

|
(
( X0_13=constB177 )
)

|
(
( X0_13=constB175 )
)

|
(
( X0_13=constB173 )
)

|
(
( X0_13=constB171 )
)

|
(
( X0_13=constB169 )
)

|
(
( X0_13=constB167 )
)

|
(
( X0_13=constB165 )
)

|
(
( X0_13=constB163 )
)

|
(
( X0_13=constB161 )
)

|
(
( X0_13=constB159 )
)

|
(
( X0_13=constB157 )
)

|
(
( X0_13=constB155 )
)

|
(
( X0_13=constB153 )
)

|
(
( X0_13=constB151 )
)

|
(
( X0_13=constB149 )
)

|
(
( X0_13=constB147 )
)

|
(
( X0_13=constB145 )
)

|
(
( X0_13=constB143 )
)

|
(
( X0_13=constB141 )
)

|
(
( X0_13=constB139 )
)

|
(
( X0_13=constB137 )
)

|
(
( X0_13=constB135 )
)

|
(
( X0_13=constB133 )
)

|
(
( X0_13=constB131 )
)

|
(
( X0_13=constB129 )
)

|
(
( X0_13=constB127 )
)

|
(
( X0_13=constB125 )
)

|
(
( X0_13=constB123 )
)

|
(
( X0_13=constB121 )
)

|
(
( X0_13=constB119 )
)

|
(
( X0_13=constB117 )
)

|
(
( X0_13=constB115 )
)

|
(
( X0_13=constB113 )
)

|
(
( X0_13=constB111 )
)

|
(
( X0_13=constB109 )
)

|
(
( X0_13=constB107 )
)

|
(
( X0_13=constB105 )
)

|
(
( X0_13=constB103 )
)

|
(
( X0_13=constB101 )
)

|
(
( X0_13=constB99 )
)

|
(
( X0_13=constB97 )
)

|
(
( X0_13=constB95 )
)

|
(
( X0_13=constB93 )
)

|
(
( X0_13=constB91 )
)

|
(
( X0_13=constB89 )
)

|
(
( X0_13=constB87 )
)

|
(
( X0_13=constB85 )
)

|
(
( X0_13=constB83 )
)

|
(
( X0_13=constB81 )
)

|
(
( X0_13=constB79 )
)

|
(
( X0_13=constB77 )
)

|
(
( X0_13=constB75 )
)

|
(
( X0_13=constB73 )
)

|
(
( X0_13=constB71 )
)

|
(
( X0_13=constB69 )
)

|
(
( X0_13=constB67 )
)

|
(
( X0_13=constB65 )
)

|
(
( X0_13=constB63 )
)

|
(
( X0_13=constB61 )
)

|
(
( X0_13=constB59 )
)

|
(
( X0_13=constB57 )
)

|
(
( X0_13=constB55 )
)

|
(
( X0_13=constB53 )
)

|
(
( X0_13=constB51 )
)

|
(
( X0_13=constB49 )
)

|
(
( X0_13=constB47 )
)

|
(
( X0_13=constB45 )
)

|
(
( X0_13=constB43 )
)

|
(
( X0_13=constB41 )
)

|
(
( X0_13=constB39 )
)

|
(
( X0_13=constB37 )
)

|
(
( X0_13=constB35 )
)

|
(
( X0_13=constB33 )
)

|
(
( X0_13=constB31 )
)

|
(
( X0_13=constB29 )
)

|
(
( X0_13=constB27 )
)

|
(
( X0_13=constB25 )
)

|
(
( X0_13=constB23 )
)

|
(
( X0_13=constB21 )
)

|
(
( X0_13=constB19 )
)

|
(
( X0_13=constB17 )
)

|
(
( X0_13=constB15 )
)

|
(
( X0_13=constB13 )
)

|
(
( X0_13=constB11 )
)

|
(
( X0_13=constB9 )
)

|
(
( X0_13=constB7 )
)

|
(
( X0_13=constB5 )
)

|
(
( X0_13=constB3 )
)

|
(
( X0_13=constB1 )
)

|
(
( X0_13=sK0 )
)

)
)
)
).

%------ Negative definition of v182
fof(lit_def,axiom,
(! [X0_13] :
( ~(v182(X0_13)) <=>
(
(
( X0_13=constB199 )
)

|
(
( X0_13=constB197 )
)

|
(
( X0_13=constB195 )
)

|
(
( X0_13=constB193 )
)

|
(
( X0_13=constB191 )
)

|
(
( X0_13=constB189 )
)

|
(
( X0_13=constB187 )
)

|
(
( X0_13=constB185 )
)

|
(
( X0_13=constB183 )
)

|
(
( X0_13=constB181 )
)

|
(
( X0_13=constB179 )
)

|
(
( X0_13=constB177 )
)

|
(
( X0_13=constB175 )
)

|
(
( X0_13=constB173 )
)

|
(
( X0_13=constB171 )
)

|
(
( X0_13=constB169 )
)

|
(
( X0_13=constB167 )
)

|
(
( X0_13=constB165 )
)

|
(
( X0_13=constB163 )
)

|
(
( X0_13=constB161 )
)

|
(
( X0_13=constB159 )
)

|
(
( X0_13=constB157 )
)

|
(
( X0_13=constB155 )
)

|
(
( X0_13=constB153 )
)

|
(
( X0_13=constB151 )
)

|
(
( X0_13=constB149 )
)

|
(
( X0_13=constB147 )
)

|
(
( X0_13=constB145 )
)

|
(
( X0_13=constB143 )
)

|
(
( X0_13=constB141 )
)

|
(
( X0_13=constB139 )
)

|
(
( X0_13=constB137 )
)

|
(
( X0_13=constB135 )
)

|
(
( X0_13=constB133 )
)

|
(
( X0_13=constB131 )
)

|
(
( X0_13=constB129 )
)

|
(
( X0_13=constB127 )
)

|
(
( X0_13=constB125 )
)

|
(
( X0_13=constB123 )
)

|
(
( X0_13=constB121 )
)

|
(
( X0_13=constB119 )
)

|
(
( X0_13=constB117 )
)

|
(
( X0_13=constB115 )
)

|
(
( X0_13=constB113 )
)

|
(
( X0_13=constB111 )
)

|
(
( X0_13=constB109 )
)

|
(
( X0_13=constB107 )
)

|
(
( X0_13=constB105 )
)

|
(
( X0_13=constB103 )
)

|
(
( X0_13=constB101 )
)

|
(
( X0_13=constB99 )
)

|
(
( X0_13=constB97 )
)

|
(
( X0_13=constB95 )
)

|
(
( X0_13=constB93 )
)

|
(
( X0_13=constB91 )
)

|
(
( X0_13=constB89 )
)

|
(
( X0_13=constB87 )
)

|
(
( X0_13=constB85 )
)

|
(
( X0_13=constB83 )
)

|
(
( X0_13=constB81 )
)

|
(
( X0_13=constB79 )
)

|
(
( X0_13=constB77 )
)

|
(
( X0_13=constB75 )
)

|
(
( X0_13=constB73 )
)

|
(
( X0_13=constB71 )
)

|
(
( X0_13=constB69 )
)

|
(
( X0_13=constB67 )
)

|
(
( X0_13=constB65 )
)

|
(
( X0_13=constB63 )
)

|
(
( X0_13=constB61 )
)

|
(
( X0_13=constB59 )
)

|
(
( X0_13=constB57 )
)

|
(
( X0_13=constB55 )
)

|
(
( X0_13=constB53 )
)

|
(
( X0_13=constB51 )
)

|
(
( X0_13=constB49 )
)

|
(
( X0_13=constB47 )
)

|
(
( X0_13=constB45 )
)

|
(
( X0_13=constB43 )
)

|
(
( X0_13=constB41 )
)

|
(
( X0_13=constB39 )
)

|
(
( X0_13=constB37 )
)

|
(
( X0_13=constB35 )
)

|
(
( X0_13=constB33 )
)

|
(
( X0_13=constB31 )
)

|
(
( X0_13=constB29 )
)

|
(
( X0_13=constB27 )
)

|
(
( X0_13=constB25 )
)

|
(
( X0_13=constB23 )
)

|
(
( X0_13=constB21 )
)

|
(
( X0_13=constB19 )
)

|
(
( X0_13=constB17 )
)

|
(
( X0_13=constB15 )
)

|
(
( X0_13=constB13 )
)

|
(
( X0_13=constB11 )
)

|
(
( X0_13=constB9 )
)

|
(
( X0_13=constB7 )
)

|
(
( X0_13=constB5 )
)

|
(
( X0_13=constB3 )
)

|
(
( X0_13=constB1 )
)

|
(
( X0_13=sK0 )
)

)
)
)
).

%------ Positive definition of v178
fof(lit_def,axiom,
(! [X0_13] :
( v178(X0_13) <=>
(
(
( X0_13=constB192 )
)

|
(
( X0_13=constB191 )
)

|
(
( X0_13=constB182 )
)

|
(
( X0_13=constB181 )
)

|
(
( X0_13=constB172 )
)

|
(
( X0_13=constB171 )
)

|
(
( X0_13=constB162 )
)

|
(
( X0_13=constB161 )
)

|
(
( X0_13=constB152 )
)

|
(
( X0_13=constB151 )
)

|
(
( X0_13=constB142 )
)

|
(
( X0_13=constB141 )
)

|
(
( X0_13=constB132 )
)

|
(
( X0_13=constB131 )
)

|
(
( X0_13=constB122 )
)

|
(
( X0_13=constB121 )
)

|
(
( X0_13=constB112 )
)

|
(
( X0_13=constB111 )
)

|
(
( X0_13=constB102 )
)

|
(
( X0_13=constB101 )
)

|
(
( X0_13=constB92 )
)

|
(
( X0_13=constB91 )
)

|
(
( X0_13=constB82 )
)

|
(
( X0_13=constB81 )
)

|
(
( X0_13=constB72 )
)

|
(
( X0_13=constB71 )
)

|
(
( X0_13=constB62 )
)

|
(
( X0_13=constB61 )
)

|
(
( X0_13=constB52 )
)

|
(
( X0_13=constB51 )
)

|
(
( X0_13=constB42 )
)

|
(
( X0_13=constB41 )
)

|
(
( X0_13=constB32 )
)

|
(
( X0_13=constB31 )
)

|
(
( X0_13=constB22 )
)

|
(
( X0_13=constB21 )
)

|
(
( X0_13=constB12 )
)

|
(
( X0_13=constB11 )
)

)
)
)
).

%------ Positive definition of v180
fof(lit_def,axiom,
(! [X0_13] :
( v180(X0_13) <=>
(
(
( X0_13=constB193 )
)

|
(
( X0_13=constB192 )
)

|
(
( X0_13=constB183 )
)

|
(
( X0_13=constB182 )
)

|
(
( X0_13=constB173 )
)

|
(
( X0_13=constB172 )
)

|
(
( X0_13=constB163 )
)

|
(
( X0_13=constB162 )
)

|
(
( X0_13=constB153 )
)

|
(
( X0_13=constB152 )
)

|
(
( X0_13=constB143 )
)

|
(
( X0_13=constB142 )
)

|
(
( X0_13=constB133 )
)

|
(
( X0_13=constB132 )
)

|
(
( X0_13=constB123 )
)

|
(
( X0_13=constB122 )
)

|
(
( X0_13=constB113 )
)

|
(
( X0_13=constB112 )
)

|
(
( X0_13=constB103 )
)

|
(
( X0_13=constB102 )
)

|
(
( X0_13=constB93 )
)

|
(
( X0_13=constB92 )
)

|
(
( X0_13=constB83 )
)

|
(
( X0_13=constB82 )
)

|
(
( X0_13=constB73 )
)

|
(
( X0_13=constB72 )
)

|
(
( X0_13=constB63 )
)

|
(
( X0_13=constB62 )
)

|
(
( X0_13=constB53 )
)

|
(
( X0_13=constB52 )
)

|
(
( X0_13=constB43 )
)

|
(
( X0_13=constB42 )
)

|
(
( X0_13=constB33 )
)

|
(
( X0_13=constB32 )
)

|
(
( X0_13=constB23 )
)

|
(
( X0_13=constB22 )
)

|
(
( X0_13=constB13 )
)

|
(
( X0_13=constB12 )
)

)
)
)
).

%------ Positive definition of v197
fof(lit_def,axiom,
(! [X0_13] :
( v197(X0_13) <=>
(
(
( X0_13=constB194 )
)

|
(
( X0_13=constB184 )
)

|
(
( X0_13=constB174 )
)

|
(
( X0_13=constB164 )
)

|
(
( X0_13=constB154 )
)

|
(
( X0_13=constB144 )
)

|
(
( X0_13=constB134 )
)

|
(
( X0_13=constB124 )
)

|
(
( X0_13=constB114 )
)

|
(
( X0_13=constB104 )
)

|
(
( X0_13=constB94 )
)

|
(
( X0_13=constB84 )
)

|
(
( X0_13=constB74 )
)

|
(
( X0_13=constB64 )
)

|
(
( X0_13=constB54 )
)

|
(
( X0_13=constB44 )
)

|
(
( X0_13=constB34 )
)

|
(
( X0_13=constB24 )
)

|
(
( X0_13=constB14 )
)

)
)
)
).

%------ Positive definition of v194
fof(lit_def,axiom,
(! [X0_13] :
( v194(X0_13) <=>
(
(
( X0_13=constB194 )
)

|
(
( X0_13=constB193 )
)

|
(
( X0_13=constB184 )
)

|
(
( X0_13=constB183 )
)

|
(
( X0_13=constB174 )
)

|
(
( X0_13=constB173 )
)

|
(
( X0_13=constB164 )
)

|
(
( X0_13=constB163 )
)

|
(
( X0_13=constB154 )
)

|
(
( X0_13=constB153 )
)

|
(
( X0_13=constB144 )
)

|
(
( X0_13=constB143 )
)

|
(
( X0_13=constB134 )
)

|
(
( X0_13=constB133 )
)

|
(
( X0_13=constB124 )
)

|
(
( X0_13=constB123 )
)

|
(
( X0_13=constB114 )
)

|
(
( X0_13=constB113 )
)

|
(
( X0_13=constB104 )
)

|
(
( X0_13=constB103 )
)

|
(
( X0_13=constB94 )
)

|
(
( X0_13=constB93 )
)

|
(
( X0_13=constB84 )
)

|
(
( X0_13=constB83 )
)

|
(
( X0_13=constB74 )
)

|
(
( X0_13=constB73 )
)

|
(
( X0_13=constB64 )
)

|
(
( X0_13=constB63 )
)

|
(
( X0_13=constB54 )
)

|
(
( X0_13=constB53 )
)

|
(
( X0_13=constB44 )
)

|
(
( X0_13=constB43 )
)

|
(
( X0_13=constB34 )
)

|
(
( X0_13=constB33 )
)

|
(
( X0_13=constB24 )
)

|
(
( X0_13=constB23 )
)

|
(
( X0_13=constB14 )
)

|
(
( X0_13=constB13 )
)

)
)
)
).

%------ Positive definition of v196
fof(lit_def,axiom,
(! [X0_13] :
( v196(X0_13) <=>
(
(
( X0_13=constB195 )
)

|
(
( X0_13=constB194 )
)

|
(
( X0_13=constB185 )
)

|
(
( X0_13=constB184 )
)

|
(
( X0_13=constB175 )
)

|
(
( X0_13=constB174 )
)

|
(
( X0_13=constB165 )
)

|
(
( X0_13=constB164 )
)

|
(
( X0_13=constB155 )
)

|
(
( X0_13=constB154 )
)

|
(
( X0_13=constB145 )
)

|
(
( X0_13=constB144 )
)

|
(
( X0_13=constB135 )
)

|
(
( X0_13=constB134 )
)

|
(
( X0_13=constB125 )
)

|
(
( X0_13=constB124 )
)

|
(
( X0_13=constB115 )
)

|
(
( X0_13=constB114 )
)

|
(
( X0_13=constB105 )
)

|
(
( X0_13=constB104 )
)

|
(
( X0_13=constB95 )
)

|
(
( X0_13=constB94 )
)

|
(
( X0_13=constB85 )
)

|
(
( X0_13=constB84 )
)

|
(
( X0_13=constB75 )
)

|
(
( X0_13=constB74 )
)

|
(
( X0_13=constB65 )
)

|
(
( X0_13=constB64 )
)

|
(
( X0_13=constB55 )
)

|
(
( X0_13=constB54 )
)

|
(
( X0_13=constB45 )
)

|
(
( X0_13=constB44 )
)

|
(
( X0_13=constB35 )
)

|
(
( X0_13=constB34 )
)

|
(
( X0_13=constB25 )
)

|
(
( X0_13=constB24 )
)

|
(
( X0_13=constB15 )
)

|
(
( X0_13=constB14 )
)

|
(
( X0_13=sK0 )
)

)
)
)
).

%------ Positive definition of reachableState
fof(lit_def,axiom,
(! [X0_13] :
( reachableState(X0_13) <=>
$true ) ) ). % SZS output end Model for HWV042_1.p ### Sample solution for HWV042_3 % SZS status Satisfiable for HWV042_3.p ------ Building Model...Done %------ The model is defined over ground terms (initial term algebra). %------ Predicates are defined as (\forall x_1,..,x_n ((~)P(x_1,..,x_n) <=> (\phi(x_1,..,x_n)))) %------ where \phi is a formula over the term algebra. %------ If we have equality in the problem then it is also defined as a predicate above, %------ with "=" on the right-hand-side of the definition interpreted over the term algebra term_algebra_type %------ See help for --sat_out_model for different model outputs. %------ equality_sorted(X0,X1,X2) can be used in the place of usual "=" %------ where the first argument stands for the sort ($i in the unsorted case)
% SZS output start Model for HWV042_3.p

%------ Positive definition of equality_sorted
fof(lit_def,axiom,
(! [X0_12,X0_13,X1_13] :
( equality_sorted(X0_12,X0_13,X1_13) <=>
(
(
( X0_12=$o & X1_1=X0_1 ) ) | ( ( X0_12=state_type ) & ( X0_13!=sK0_VarCurr ) & ( X0_13!=constB1 ) & ( X0_13!=constB2 ) & ( X0_13!=constB3 ) & ( X0_13!=constB4 ) & ( X0_13!=constB5 ) & ( X0_13!=constB6 ) & ( X0_13!=constB7 ) & ( X0_13!=constB8 ) & ( X0_13!=constB9 ) & ( X0_13!=constB10 ) & ( X0_13!=constB11 ) & ( X0_13!=constB12 ) & ( X0_13!=constB13 ) & ( X0_13!=constB14 ) & ( X0_13!=constB15 ) & ( X0_13!=constB16 ) & ( X0_13!=constB17 ) & ( X0_13!=constB18 ) & ( X0_13!=constB19 ) & ( X0_13!=constB20 ) & ( X0_13!=constB21 ) & ( X0_13!=constB22 ) & ( X0_13!=constB23 ) & ( X0_13!=constB24 ) & ( X0_13!=constB25 ) & ( X0_13!=constB26 ) & ( X0_13!=constB27 ) & ( X0_13!=constB28 ) & ( X0_13!=constB29 ) & ( X0_13!=constB30 ) & ( X0_13!=constB31 ) & ( X0_13!=constB32 ) & ( X0_13!=constB33 ) & ( X0_13!=constB34 ) & ( X0_13!=constB35 ) & ( X0_13!=constB36 ) & ( X0_13!=constB37 ) & ( X0_13!=constB38 ) & ( X0_13!=constB39 ) & ( X0_13!=constB40 ) & ( X0_13!=constB41 ) & ( X0_13!=constB42 ) & ( X0_13!=constB43 ) & ( X0_13!=constB44 ) & ( X0_13!=constB45 ) & ( X0_13!=constB46 ) & ( X0_13!=constB47 ) & ( X0_13!=constB48 ) & ( X0_13!=constB49 ) & ( X0_13!=constB50 ) & ( X0_13!=constB51 ) & ( X0_13!=constB52 ) & ( X0_13!=constB53 ) & ( X0_13!=constB54 ) & ( X0_13!=constB55 ) & ( X0_13!=constB56 ) & ( X0_13!=constB57 ) & ( X0_13!=constB58 ) & ( X0_13!=constB59 ) & ( X0_13!=constB60 ) & ( X0_13!=constB61 ) & ( X0_13!=constB62 ) & ( X0_13!=constB63 ) & ( X0_13!=constB64 ) & ( X0_13!=constB65 ) & ( X0_13!=constB66 ) & ( X0_13!=constB67 ) & ( X0_13!=constB68 ) & ( X0_13!=constB69 ) & ( X0_13!=constB70 ) & ( X0_13!=constB71 ) & ( X0_13!=constB72 ) & ( X0_13!=constB73 ) & ( X0_13!=constB74 ) & ( X0_13!=constB75 ) & ( X0_13!=constB76 ) & ( X0_13!=constB77 ) & ( X0_13!=constB78 ) & ( X0_13!=constB79 ) & ( X0_13!=constB80 ) & ( X0_13!=constB81 ) & ( X0_13!=constB82 ) & ( X0_13!=constB83 ) & ( X0_13!=constB84 ) & ( X0_13!=constB85 ) & ( X0_13!=constB86 ) & ( X0_13!=constB87 ) & ( X0_13!=constB88 ) & ( X0_13!=constB89 ) & ( X0_13!=constB90 ) & ( X0_13!=constB91 ) & ( X0_13!=constB92 ) & ( X0_13!=constB93 ) & ( X0_13!=constB94 ) & ( X0_13!=constB95 ) & ( X0_13!=constB96 ) & ( X0_13!=constB97 ) & ( X0_13!=constB98 ) & ( X0_13!=constB99 ) & ( X0_13!=constB100 ) & ( X0_13!=constB101 ) & ( X0_13!=constB102 ) & ( X0_13!=constB103 ) & ( X0_13!=constB104 ) & ( X0_13!=constB105 ) & ( X0_13!=constB106 ) & ( X0_13!=constB107 ) & ( X0_13!=constB108 ) & ( X0_13!=constB109 ) & ( X0_13!=constB110 ) & ( X0_13!=constB111 ) & ( X0_13!=constB112 ) & ( X0_13!=constB113 ) & ( X0_13!=constB114 ) & ( X0_13!=constB115 ) & ( X0_13!=constB116 ) & ( X0_13!=constB117 ) & ( X0_13!=constB118 ) & ( X0_13!=constB119 ) & ( X0_13!=constB120 ) & ( X0_13!=constB121 ) & ( X0_13!=constB122 ) & ( X0_13!=constB123 ) & ( X0_13!=constB124 ) & ( X0_13!=constB125 ) & ( X0_13!=constB126 ) & ( X0_13!=constB127 ) & ( X0_13!=constB128 ) & ( X0_13!=constB129 ) & ( X0_13!=constB130 ) & ( X0_13!=constB131 ) & ( X0_13!=constB132 ) & ( X0_13!=constB133 ) & ( X0_13!=constB134 ) & ( X0_13!=constB135 ) & ( X0_13!=constB136 ) & ( X0_13!=constB137 ) & ( X0_13!=constB138 ) & ( X0_13!=constB139 ) & ( X0_13!=constB140 ) & ( X0_13!=constB141 ) & ( X0_13!=constB142 ) & ( X0_13!=constB143 ) & ( X0_13!=constB144 ) & ( X0_13!=constB145 ) & ( X0_13!=constB146 ) & ( X0_13!=constB147 ) & ( X0_13!=constB148 ) & ( X0_13!=constB149 ) & ( X0_13!=constB150 ) & ( X0_13!=constB151 ) & ( X0_13!=constB152 ) & ( X0_13!=constB153 ) & ( X0_13!=constB154 ) & ( X0_13!=constB155 ) & ( X0_13!=constB156 ) & ( X0_13!=constB157 ) & ( X0_13!=constB158 ) & ( X0_13!=constB159 ) & ( X0_13!=constB160 ) & ( X0_13!=constB161 ) & ( X0_13!=constB162 ) & ( X0_13!=constB163 ) & ( X0_13!=constB164 ) & ( X0_13!=constB165 ) & ( X0_13!=constB166 ) & ( X0_13!=constB167 ) & ( X0_13!=constB168 ) & ( X0_13!=constB169 ) & ( X0_13!=constB170 ) & ( X0_13!=constB171 ) & ( X0_13!=constB172 ) & ( X0_13!=constB173 ) & ( X0_13!=constB174 ) & ( X0_13!=constB175 ) & ( X0_13!=constB176 ) & ( X0_13!=constB177 ) & ( X0_13!=constB178 ) & ( X0_13!=constB179 ) & ( X0_13!=constB180 ) & ( X0_13!=constB181 ) & ( X0_13!=constB182 ) & ( X0_13!=constB183 ) & ( X0_13!=constB184 ) & ( X0_13!=constB185 ) & ( X0_13!=constB186 ) & ( X0_13!=constB187 ) & ( X0_13!=constB188 ) & ( X0_13!=constB189 ) & ( X0_13!=constB190 ) & ( X0_13!=constB191 ) & ( X0_13!=constB192 ) & ( X0_13!=constB193 ) & ( X0_13!=constB194 ) & ( X0_13!=constB195 ) & ( X0_13!=constB196 ) & ( X0_13!=constB197 ) & ( X0_13!=constB198 ) & ( X0_13!=constB199 ) & ( X0_13!=constB200 ) & ( X1_13!=sK0_VarCurr ) & ( X1_13!=constB1 ) & ( X1_13!=constB2 ) & ( X1_13!=constB3 ) & ( X1_13!=constB4 ) & ( X1_13!=constB5 ) & ( X1_13!=constB6 ) & ( X1_13!=constB7 ) & ( X1_13!=constB8 ) & ( X1_13!=constB9 ) & ( X1_13!=constB10 ) & ( X1_13!=constB11 ) & ( X1_13!=constB12 ) & ( X1_13!=constB13 ) & ( X1_13!=constB14 ) & ( X1_13!=constB15 ) & ( X1_13!=constB16 ) & ( X1_13!=constB17 ) & ( X1_13!=constB18 ) & ( X1_13!=constB19 ) & ( X1_13!=constB20 ) & ( X1_13!=constB21 ) & ( X1_13!=constB22 ) & ( X1_13!=constB23 ) & ( X1_13!=constB24 ) & ( X1_13!=constB25 ) & ( X1_13!=constB26 ) & ( X1_13!=constB27 ) & ( X1_13!=constB28 ) & ( X1_13!=constB29 ) & ( X1_13!=constB30 ) & ( X1_13!=constB31 ) & ( X1_13!=constB32 ) & ( X1_13!=constB33 ) & ( X1_13!=constB34 ) & ( X1_13!=constB35 ) & ( X1_13!=constB36 ) & ( X1_13!=constB37 ) & ( X1_13!=constB38 ) & ( X1_13!=constB39 ) & ( X1_13!=constB40 ) & ( X1_13!=constB41 ) & ( X1_13!=constB42 ) & ( X1_13!=constB43 ) & ( X1_13!=constB44 ) & ( X1_13!=constB45 ) & ( X1_13!=constB46 ) & ( X1_13!=constB47 ) & ( X1_13!=constB48 ) & ( X1_13!=constB49 ) & ( X1_13!=constB50 ) & ( X1_13!=constB51 ) & ( X1_13!=constB52 ) & ( X1_13!=constB53 ) & ( X1_13!=constB54 ) & ( X1_13!=constB55 ) & ( X1_13!=constB56 ) & ( X1_13!=constB57 ) & ( X1_13!=constB58 ) & ( X1_13!=constB59 ) & ( X1_13!=constB60 ) & ( X1_13!=constB61 ) & ( X1_13!=constB62 ) & ( X1_13!=constB63 ) & ( X1_13!=constB64 ) & ( X1_13!=constB65 ) & ( X1_13!=constB66 ) & ( X1_13!=constB67 ) & ( X1_13!=constB68 ) & ( X1_13!=constB69 ) & ( X1_13!=constB70 ) & ( X1_13!=constB71 ) & ( X1_13!=constB72 ) & ( X1_13!=constB73 ) & ( X1_13!=constB74 ) & ( X1_13!=constB75 ) & ( X1_13!=constB76 ) & ( X1_13!=constB77 ) & ( X1_13!=constB78 ) & ( X1_13!=constB79 ) & ( X1_13!=constB80 ) & ( X1_13!=constB81 ) & ( X1_13!=constB82 ) & ( X1_13!=constB83 ) & ( X1_13!=constB84 ) & ( X1_13!=constB85 ) & ( X1_13!=constB86 ) & ( X1_13!=constB87 ) & ( X1_13!=constB88 ) & ( X1_13!=constB89 ) & ( X1_13!=constB90 ) & ( X1_13!=constB91 ) & ( X1_13!=constB92 ) & ( X1_13!=constB93 ) & ( X1_13!=constB94 ) & ( X1_13!=constB95 ) & ( X1_13!=constB96 ) & ( X1_13!=constB97 ) & ( X1_13!=constB98 ) & ( X1_13!=constB99 ) & ( X1_13!=constB100 ) & ( X1_13!=constB101 ) & ( X1_13!=constB102 ) & ( X1_13!=constB103 ) & ( X1_13!=constB104 ) & ( X1_13!=constB105 ) & ( X1_13!=constB106 ) & ( X1_13!=constB107 ) & ( X1_13!=constB108 ) & ( X1_13!=constB109 ) & ( X1_13!=constB110 ) & ( X1_13!=constB111 ) & ( X1_13!=constB112 ) & ( X1_13!=constB113 ) & ( X1_13!=constB114 ) & ( X1_13!=constB115 ) & ( X1_13!=constB116 ) & ( X1_13!=constB117 ) & ( X1_13!=constB118 ) & ( X1_13!=constB119 ) & ( X1_13!=constB120 ) & ( X1_13!=constB121 ) & ( X1_13!=constB122 ) & ( X1_13!=constB123 ) & ( X1_13!=constB124 ) & ( X1_13!=constB125 ) & ( X1_13!=constB126 ) & ( X1_13!=constB127 ) & ( X1_13!=constB128 ) & ( X1_13!=constB129 ) & ( X1_13!=constB130 ) & ( X1_13!=constB131 ) & ( X1_13!=constB132 ) & ( X1_13!=constB133 ) & ( X1_13!=constB134 ) & ( X1_13!=constB135 ) & ( X1_13!=constB136 ) & ( X1_13!=constB137 ) & ( X1_13!=constB138 ) & ( X1_13!=constB139 ) & ( X1_13!=constB140 ) & ( X1_13!=constB141 ) & ( X1_13!=constB142 ) & ( X1_13!=constB143 ) & ( X1_13!=constB144 ) & ( X1_13!=constB145 ) & ( X1_13!=constB146 ) & ( X1_13!=constB147 ) & ( X1_13!=constB148 ) & ( X1_13!=constB149 ) & ( X1_13!=constB150 ) & ( X1_13!=constB151 ) & ( X1_13!=constB152 ) & ( X1_13!=constB153 ) & ( X1_13!=constB154 ) & ( X1_13!=constB155 ) & ( X1_13!=constB156 ) & ( X1_13!=constB157 ) & ( X1_13!=constB158 ) & ( X1_13!=constB159 ) & ( X1_13!=constB160 ) & ( X1_13!=constB161 ) & ( X1_13!=constB162 ) & ( X1_13!=constB163 ) & ( X1_13!=constB164 ) & ( X1_13!=constB165 ) & ( X1_13!=constB166 ) & ( X1_13!=constB167 ) & ( X1_13!=constB168 ) & ( X1_13!=constB169 ) & ( X1_13!=constB170 ) & ( X1_13!=constB171 ) & ( X1_13!=constB172 ) & ( X1_13!=constB173 ) & ( X1_13!=constB174 ) & ( X1_13!=constB175 ) & ( X1_13!=constB176 ) & ( X1_13!=constB177 ) & ( X1_13!=constB178 ) & ( X1_13!=constB179 ) & ( X1_13!=constB180 ) & ( X1_13!=constB181 ) & ( X1_13!=constB182 ) & ( X1_13!=constB183 ) & ( X1_13!=constB184 ) & ( X1_13!=constB185 ) & ( X1_13!=constB186 ) & ( X1_13!=constB187 ) & ( X1_13!=constB188 ) & ( X1_13!=constB189 ) & ( X1_13!=constB190 ) & ( X1_13!=constB191 ) & ( X1_13!=constB192 ) & ( X1_13!=constB193 ) & ( X1_13!=constB194 ) & ( X1_13!=constB195 ) & ( X1_13!=constB196 ) & ( X1_13!=constB197 ) & ( X1_13!=constB198 ) & ( X1_13!=constB199 ) & ( X1_13!=constB200 ) ) | ( ( X0_12=state_type & X0_13=sK0_VarCurr & X1_13=sK0_VarCurr ) ) | ( ( X0_12=state_type & X0_13=sK0_VarCurr & X1_13=constB195 ) ) | ( ( X0_12=state_type & X0_13=constB1 & X1_13=constB1 ) ) | ( ( X0_12=state_type & X0_13=constB2 & X1_13=constB2 ) ) | ( ( X0_12=state_type & X0_13=constB3 & X1_13=constB3 ) ) | ( ( X0_12=state_type & X0_13=constB4 & X1_13=constB4 ) ) | ( ( X0_12=state_type & X0_13=constB5 & X1_13=constB5 ) ) | ( ( X0_12=state_type & X0_13=constB6 & X1_13=constB6 ) ) | ( ( X0_12=state_type & X0_13=constB7 & X1_13=constB7 ) ) | ( ( X0_12=state_type & X0_13=constB8 & X1_13=constB8 ) ) | ( ( X0_12=state_type & X0_13=constB9 & X1_13=constB9 ) ) | ( ( X0_12=state_type & X0_13=constB10 & X1_13=constB10 ) ) | ( ( X0_12=state_type & X0_13=constB11 & X1_13=constB11 ) ) | ( ( X0_12=state_type & X0_13=constB12 & X1_13=constB12 ) ) | ( ( X0_12=state_type & X0_13=constB13 & X1_13=constB13 ) ) | ( ( X0_12=state_type & X0_13=constB14 & X1_13=constB14 ) ) | ( ( X0_12=state_type & X0_13=constB15 & X1_13=constB15 ) ) | ( ( X0_12=state_type & X0_13=constB16 & X1_13=constB16 ) ) | ( ( X0_12=state_type & X0_13=constB17 & X1_13=constB17 ) ) | ( ( X0_12=state_type & X0_13=constB18 & X1_13=constB18 ) ) | ( ( X0_12=state_type & X0_13=constB19 & X1_13=constB19 ) ) | ( ( X0_12=state_type & X0_13=constB20 & X1_13=constB20 ) ) | ( ( X0_12=state_type & X0_13=constB21 & X1_13=constB21 ) ) | ( ( X0_12=state_type & X0_13=constB22 & X1_13=constB22 ) ) | ( ( X0_12=state_type & X0_13=constB23 & X1_13=constB23 ) ) | ( ( X0_12=state_type & X0_13=constB24 & X1_13=constB24 ) ) | ( ( X0_12=state_type & X0_13=constB25 & X1_13=constB25 ) ) | ( ( X0_12=state_type & X0_13=constB26 & X1_13=constB26 ) ) | ( ( X0_12=state_type & X0_13=constB27 & X1_13=constB27 ) ) | ( ( X0_12=state_type & X0_13=constB28 & X1_13=constB28 ) ) | ( ( X0_12=state_type & X0_13=constB29 & X1_13=constB29 ) ) | ( ( X0_12=state_type & X0_13=constB30 & X1_13=constB30 ) ) | ( ( X0_12=state_type & X0_13=constB31 & X1_13=constB31 ) ) | ( ( X0_12=state_type & X0_13=constB32 & X1_13=constB32 ) ) | ( ( X0_12=state_type & X0_13=constB33 & X1_13=constB33 ) ) | ( ( X0_12=state_type & X0_13=constB34 & X1_13=constB34 ) ) | ( ( X0_12=state_type & X0_13=constB35 & X1_13=constB35 ) ) | ( ( X0_12=state_type & X0_13=constB36 & X1_13=constB36 ) ) | ( ( X0_12=state_type & X0_13=constB37 & X1_13=constB37 ) ) | ( ( X0_12=state_type & X0_13=constB38 & X1_13=constB38 ) ) | ( ( X0_12=state_type & X0_13=constB39 & X1_13=constB39 ) ) | ( ( X0_12=state_type & X0_13=constB40 & X1_13=constB40 ) ) | ( ( X0_12=state_type & X0_13=constB41 & X1_13=constB41 ) ) | ( ( X0_12=state_type & X0_13=constB42 & X1_13=constB42 ) ) | ( ( X0_12=state_type & X0_13=constB43 & X1_13=constB43 ) ) | ( ( X0_12=state_type & X0_13=constB44 & X1_13=constB44 ) ) | ( ( X0_12=state_type & X0_13=constB45 & X1_13=constB45 ) ) | ( ( X0_12=state_type & X0_13=constB46 & X1_13=constB46 ) ) | ( ( X0_12=state_type & X0_13=constB47 & X1_13=constB47 ) ) | ( ( X0_12=state_type & X0_13=constB48 & X1_13=constB48 ) ) | ( ( X0_12=state_type & X0_13=constB49 & X1_13=constB49 ) ) | ( ( X0_12=state_type & X0_13=constB50 & X1_13=constB50 ) ) | ( ( X0_12=state_type & X0_13=constB51 & X1_13=constB51 ) ) | ( ( X0_12=state_type & X0_13=constB52 & X1_13=constB52 ) ) | ( ( X0_12=state_type & X0_13=constB53 & X1_13=constB53 ) ) | ( ( X0_12=state_type & X0_13=constB54 & X1_13=constB54 ) ) | ( ( X0_12=state_type & X0_13=constB55 & X1_13=constB55 ) ) | ( ( X0_12=state_type & X0_13=constB56 & X1_13=constB56 ) ) | ( ( X0_12=state_type & X0_13=constB57 & X1_13=constB57 ) ) | ( ( X0_12=state_type & X0_13=constB58 & X1_13=constB58 ) ) | ( ( X0_12=state_type & X0_13=constB59 & X1_13=constB59 ) ) | ( ( X0_12=state_type & X0_13=constB60 & X1_13=constB60 ) ) | ( ( X0_12=state_type & X0_13=constB61 & X1_13=constB61 ) ) | ( ( X0_12=state_type & X0_13=constB62 & X1_13=constB62 ) ) | ( ( X0_12=state_type & X0_13=constB63 & X1_13=constB63 ) ) | ( ( X0_12=state_type & X0_13=constB64 & X1_13=constB64 ) ) | ( ( X0_12=state_type & X0_13=constB65 & X1_13=constB65 ) ) | ( ( X0_12=state_type & X0_13=constB66 & X1_13=constB66 ) ) | ( ( X0_12=state_type & X0_13=constB67 & X1_13=constB67 ) ) | ( ( X0_12=state_type & X0_13=constB68 & X1_13=constB68 ) ) | ( ( X0_12=state_type & X0_13=constB69 & X1_13=constB69 ) ) | ( ( X0_12=state_type & X0_13=constB70 & X1_13=constB70 ) ) | ( ( X0_12=state_type & X0_13=constB71 & X1_13=constB71 ) ) | ( ( X0_12=state_type & X0_13=constB72 & X1_13=constB72 ) ) | ( ( X0_12=state_type & X0_13=constB73 & X1_13=constB73 ) ) | ( ( X0_12=state_type & X0_13=constB74 & X1_13=constB74 ) ) | ( ( X0_12=state_type & X0_13=constB75 & X1_13=constB75 ) ) | ( ( X0_12=state_type & X0_13=constB76 & X1_13=constB76 ) ) | ( ( X0_12=state_type & X0_13=constB77 & X1_13=constB77 ) ) | ( ( X0_12=state_type & X0_13=constB78 & X1_13=constB78 ) ) | ( ( X0_12=state_type & X0_13=constB79 & X1_13=constB79 ) ) | ( ( X0_12=state_type & X0_13=constB80 & X1_13=constB80 ) ) | ( ( X0_12=state_type & X0_13=constB81 & X1_13=constB81 ) ) | ( ( X0_12=state_type & X0_13=constB82 & X1_13=constB82 ) ) | ( ( X0_12=state_type & X0_13=constB83 & X1_13=constB83 ) ) | ( ( X0_12=state_type & X0_13=constB84 & X1_13=constB84 ) ) | ( ( X0_12=state_type & X0_13=constB85 & X1_13=constB85 ) ) | ( ( X0_12=state_type & X0_13=constB86 & X1_13=constB86 ) ) | ( ( X0_12=state_type & X0_13=constB87 & X1_13=constB87 ) ) | ( ( X0_12=state_type & X0_13=constB88 & X1_13=constB88 ) ) | ( ( X0_12=state_type & X0_13=constB89 & X1_13=constB89 ) ) | ( ( X0_12=state_type & X0_13=constB90 & X1_13=constB90 ) ) | ( ( X0_12=state_type & X0_13=constB91 & X1_13=constB91 ) ) | ( ( X0_12=state_type & X0_13=constB92 & X1_13=constB92 ) ) | ( ( X0_12=state_type & X0_13=constB93 & X1_13=constB93 ) ) | ( ( X0_12=state_type & X0_13=constB94 & X1_13=constB94 ) ) | ( ( X0_12=state_type & X0_13=constB95 & X1_13=constB95 ) ) | ( ( X0_12=state_type & X0_13=constB96 & X1_13=constB96 ) ) | ( ( X0_12=state_type & X0_13=constB97 & X1_13=constB97 ) ) | ( ( X0_12=state_type & X0_13=constB98 & X1_13=constB98 ) ) | ( ( X0_12=state_type & X0_13=constB99 & X1_13=constB99 ) ) | ( ( X0_12=state_type & X0_13=constB100 & X1_13=constB100 ) ) | ( ( X0_12=state_type & X0_13=constB101 & X1_13=constB101 ) ) | ( ( X0_12=state_type & X0_13=constB102 & X1_13=constB102 ) ) | ( ( X0_12=state_type & X0_13=constB103 & X1_13=constB103 ) ) | ( ( X0_12=state_type & X0_13=constB104 & X1_13=constB104 ) ) | ( ( X0_12=state_type & X0_13=constB105 & X1_13=constB105 ) ) | ( ( X0_12=state_type & X0_13=constB106 & X1_13=constB106 ) ) | ( ( X0_12=state_type & X0_13=constB107 & X1_13=constB107 ) ) | ( ( X0_12=state_type & X0_13=constB108 & X1_13=constB108 ) ) | ( ( X0_12=state_type & X0_13=constB109 & X1_13=constB109 ) ) | ( ( X0_12=state_type & X0_13=constB110 & X1_13=constB110 ) ) | ( ( X0_12=state_type & X0_13=constB111 & X1_13=constB111 ) ) | ( ( X0_12=state_type & X0_13=constB112 & X1_13=constB112 ) ) | ( ( X0_12=state_type & X0_13=constB113 & X1_13=constB113 ) ) | ( ( X0_12=state_type & X0_13=constB114 & X1_13=constB114 ) ) | ( ( X0_12=state_type & X0_13=constB115 & X1_13=constB115 ) ) | ( ( X0_12=state_type & X0_13=constB116 & X1_13=constB116 ) ) | ( ( X0_12=state_type & X0_13=constB117 & X1_13=constB117 ) ) | ( ( X0_12=state_type & X0_13=constB118 & X1_13=constB118 ) ) | ( ( X0_12=state_type & X0_13=constB119 & X1_13=constB119 ) ) | ( ( X0_12=state_type & X0_13=constB120 & X1_13=constB120 ) ) | ( ( X0_12=state_type & X0_13=constB121 & X1_13=constB121 ) ) | ( ( X0_12=state_type & X0_13=constB122 & X1_13=constB122 ) ) | ( ( X0_12=state_type & X0_13=constB123 & X1_13=constB123 ) ) | ( ( X0_12=state_type & X0_13=constB124 & X1_13=constB124 ) ) | ( ( X0_12=state_type & X0_13=constB125 & X1_13=constB125 ) ) | ( ( X0_12=state_type & X0_13=constB126 & X1_13=constB126 ) ) | ( ( X0_12=state_type & X0_13=constB127 & X1_13=constB127 ) ) | ( ( X0_12=state_type & X0_13=constB128 & X1_13=constB128 ) ) | ( ( X0_12=state_type & X0_13=constB129 & X1_13=constB129 ) ) | ( ( X0_12=state_type & X0_13=constB130 & X1_13=constB130 ) ) | ( ( X0_12=state_type & X0_13=constB131 & X1_13=constB131 ) ) | ( ( X0_12=state_type & X0_13=constB132 & X1_13=constB132 ) ) | ( ( X0_12=state_type & X0_13=constB133 & X1_13=constB133 ) ) | ( ( X0_12=state_type & X0_13=constB134 & X1_13=constB134 ) ) | ( ( X0_12=state_type & X0_13=constB135 & X1_13=constB135 ) ) | ( ( X0_12=state_type & X0_13=constB136 & X1_13=constB136 ) ) | ( ( X0_12=state_type & X0_13=constB137 & X1_13=constB137 ) ) | ( ( X0_12=state_type & X0_13=constB138 & X1_13=constB138 ) ) | ( ( X0_12=state_type & X0_13=constB139 & X1_13=constB139 ) ) | ( ( X0_12=state_type & X0_13=constB140 & X1_13=constB140 ) ) | ( ( X0_12=state_type & X0_13=constB141 & X1_13=constB141 ) ) | ( ( X0_12=state_type & X0_13=constB142 & X1_13=constB142 ) ) | ( ( X0_12=state_type & X0_13=constB143 & X1_13=constB143 ) ) | ( ( X0_12=state_type & X0_13=constB144 & X1_13=constB144 ) ) | ( ( X0_12=state_type & X0_13=constB145 & X1_13=constB145 ) ) | ( ( X0_12=state_type & X0_13=constB146 & X1_13=constB146 ) ) | ( ( X0_12=state_type & X0_13=constB147 & X1_13=constB147 ) ) | ( ( X0_12=state_type & X0_13=constB148 & X1_13=constB148 ) ) | ( ( X0_12=state_type & X0_13=constB149 & X1_13=constB149 ) ) | ( ( X0_12=state_type & X0_13=constB150 & X1_13=constB150 ) ) | ( ( X0_12=state_type & X0_13=constB151 & X1_13=constB151 ) ) | ( ( X0_12=state_type & X0_13=constB152 & X1_13=constB152 ) ) | ( ( X0_12=state_type & X0_13=constB153 & X1_13=constB153 ) ) | ( ( X0_12=state_type & X0_13=constB154 & X1_13=constB154 ) ) | ( ( X0_12=state_type & X0_13=constB155 & X1_13=constB155 ) ) | ( ( X0_12=state_type & X0_13=constB156 & X1_13=constB156 ) ) | ( ( X0_12=state_type & X0_13=constB157 & X1_13=constB157 ) ) | ( ( X0_12=state_type & X0_13=constB158 & X1_13=constB158 ) ) | ( ( X0_12=state_type & X0_13=constB159 & X1_13=constB159 ) ) | ( ( X0_12=state_type & X0_13=constB160 & X1_13=constB160 ) ) | ( ( X0_12=state_type & X0_13=constB161 & X1_13=constB161 ) ) | ( ( X0_12=state_type & X0_13=constB162 & X1_13=constB162 ) ) | ( ( X0_12=state_type & X0_13=constB163 & X1_13=constB163 ) ) | ( ( X0_12=state_type & X0_13=constB164 & X1_13=constB164 ) ) | ( ( X0_12=state_type & X0_13=constB165 & X1_13=constB165 ) ) | ( ( X0_12=state_type & X0_13=constB166 & X1_13=constB166 ) ) | ( ( X0_12=state_type & X0_13=constB167 & X1_13=constB167 ) ) | ( ( X0_12=state_type & X0_13=constB168 & X1_13=constB168 ) ) | ( ( X0_12=state_type & X0_13=constB169 & X1_13=constB169 ) ) | ( ( X0_12=state_type & X0_13=constB170 & X1_13=constB170 ) ) | ( ( X0_12=state_type & X0_13=constB171 & X1_13=constB171 ) ) | ( ( X0_12=state_type & X0_13=constB172 & X1_13=constB172 ) ) | ( ( X0_12=state_type & X0_13=constB173 & X1_13=constB173 ) ) | ( ( X0_12=state_type & X0_13=constB174 & X1_13=constB174 ) ) | ( ( X0_12=state_type & X0_13=constB175 & X1_13=constB175 ) ) | ( ( X0_12=state_type & X0_13=constB176 & X1_13=constB176 ) ) | ( ( X0_12=state_type & X0_13=constB177 & X1_13=constB177 ) ) | ( ( X0_12=state_type & X0_13=constB178 & X1_13=constB178 ) ) | ( ( X0_12=state_type & X0_13=constB179 & X1_13=constB179 ) ) | ( ( X0_12=state_type & X0_13=constB180 & X1_13=constB180 ) ) | ( ( X0_12=state_type & X0_13=constB181 & X1_13=constB181 ) ) | ( ( X0_12=state_type & X0_13=constB182 & X1_13=constB182 ) ) | ( ( X0_12=state_type & X0_13=constB183 & X1_13=constB183 ) ) | ( ( X0_12=state_type & X0_13=constB184 & X1_13=constB184 ) ) | ( ( X0_12=state_type & X0_13=constB185 & X1_13=constB185 ) ) | ( ( X0_12=state_type & X0_13=constB186 & X1_13=constB186 ) ) | ( ( X0_12=state_type & X0_13=constB187 & X1_13=constB187 ) ) | ( ( X0_12=state_type & X0_13=constB188 & X1_13=constB188 ) ) | ( ( X0_12=state_type & X0_13=constB189 & X1_13=constB189 ) ) | ( ( X0_12=state_type & X0_13=constB190 & X1_13=constB190 ) ) | ( ( X0_12=state_type & X0_13=constB191 & X1_13=constB191 ) ) | ( ( X0_12=state_type & X0_13=constB192 & X1_13=constB192 ) ) | ( ( X0_12=state_type & X0_13=constB193 & X1_13=constB193 ) ) | ( ( X0_12=state_type & X0_13=constB194 & X1_13=constB194 ) ) | ( ( X0_12=state_type & X0_13=constB195 & X1_13=sK0_VarCurr ) ) | ( ( X0_12=state_type & X0_13=constB195 & X1_13=constB195 ) ) | ( ( X0_12=state_type & X0_13=constB196 & X1_13=constB196 ) ) | ( ( X0_12=state_type & X0_13=constB197 & X1_13=constB197 ) ) | ( ( X0_12=state_type & X0_13=constB198 & X1_13=constB198 ) ) | ( ( X0_12=state_type & X0_13=constB199 & X1_13=constB199 ) ) | ( ( X0_12=state_type & X0_13=constB200 & X1_13=constB200 ) ) | ( ( X0_12=state_type & X1_13=X0_13 ) & ( X0_13!=sK0_VarCurr ) & ( X0_13!=constB1 ) & ( X0_13!=constB2 ) & ( X0_13!=constB3 ) & ( X0_13!=constB4 ) & ( X0_13!=constB5 ) & ( X0_13!=constB6 ) & ( X0_13!=constB7 ) & ( X0_13!=constB8 ) & ( X0_13!=constB9 ) & ( X0_13!=constB10 ) & ( X0_13!=constB11 ) & ( X0_13!=constB12 ) & ( X0_13!=constB13 ) & ( X0_13!=constB14 ) & ( X0_13!=constB15 ) & ( X0_13!=constB16 ) & ( X0_13!=constB17 ) & ( X0_13!=constB18 ) & ( X0_13!=constB19 ) & ( X0_13!=constB20 ) & ( X0_13!=constB21 ) & ( X0_13!=constB22 ) & ( X0_13!=constB23 ) & ( X0_13!=constB24 ) & ( X0_13!=constB25 ) & ( X0_13!=constB26 ) & ( X0_13!=constB27 ) & ( X0_13!=constB28 ) & ( X0_13!=constB29 ) & ( X0_13!=constB30 ) & ( X0_13!=constB31 ) & ( X0_13!=constB32 ) & ( X0_13!=constB33 ) & ( X0_13!=constB34 ) & ( X0_13!=constB35 ) & ( X0_13!=constB36 ) & ( X0_13!=constB37 ) & ( X0_13!=constB38 ) & ( X0_13!=constB39 ) & ( X0_13!=constB40 ) & ( X0_13!=constB41 ) & ( X0_13!=constB42 ) & ( X0_13!=constB43 ) & ( X0_13!=constB44 ) & ( X0_13!=constB45 ) & ( X0_13!=constB46 ) & ( X0_13!=constB47 ) & ( X0_13!=constB48 ) & ( X0_13!=constB49 ) & ( X0_13!=constB50 ) & ( X0_13!=constB51 ) & ( X0_13!=constB52 ) & ( X0_13!=constB53 ) & ( X0_13!=constB54 ) & ( X0_13!=constB55 ) & ( X0_13!=constB56 ) & ( X0_13!=constB57 ) & ( X0_13!=constB58 ) & ( X0_13!=constB59 ) & ( X0_13!=constB60 ) & ( X0_13!=constB61 ) & ( X0_13!=constB62 ) & ( X0_13!=constB63 ) & ( X0_13!=constB64 ) & ( X0_13!=constB65 ) & ( X0_13!=constB66 ) & ( X0_13!=constB67 ) & ( X0_13!=constB68 ) & ( X0_13!=constB69 ) & ( X0_13!=constB70 ) & ( X0_13!=constB71 ) & ( X0_13!=constB72 ) & ( X0_13!=constB73 ) & ( X0_13!=constB74 ) & ( X0_13!=constB75 ) & ( X0_13!=constB76 ) & ( X0_13!=constB77 ) & ( X0_13!=constB78 ) & ( X0_13!=constB79 ) & ( X0_13!=constB80 ) & ( X0_13!=constB81 ) & ( X0_13!=constB82 ) & ( X0_13!=constB83 ) & ( X0_13!=constB84 ) & ( X0_13!=constB85 ) & ( X0_13!=constB86 ) & ( X0_13!=constB87 ) & ( X0_13!=constB88 ) & ( X0_13!=constB89 ) & ( X0_13!=constB90 ) & ( X0_13!=constB91 ) & ( X0_13!=constB92 ) & ( X0_13!=constB93 ) & ( X0_13!=constB94 ) & ( X0_13!=constB95 ) & ( X0_13!=constB96 ) & ( X0_13!=constB97 ) & ( X0_13!=constB98 ) & ( X0_13!=constB99 ) & ( X0_13!=constB100 ) & ( X0_13!=constB101 ) & ( X0_13!=constB102 ) & ( X0_13!=constB103 ) & ( X0_13!=constB104 ) & ( X0_13!=constB105 ) & ( X0_13!=constB106 ) & ( X0_13!=constB107 ) & ( X0_13!=constB108 ) & ( X0_13!=constB109 ) & ( X0_13!=constB110 ) & ( X0_13!=constB111 ) & ( X0_13!=constB112 ) & ( X0_13!=constB113 ) & ( X0_13!=constB114 ) & ( X0_13!=constB115 ) & ( X0_13!=constB116 ) & ( X0_13!=constB117 ) & ( X0_13!=constB118 ) & ( X0_13!=constB119 ) & ( X0_13!=constB120 ) & ( X0_13!=constB121 ) & ( X0_13!=constB122 ) & ( X0_13!=constB123 ) & ( X0_13!=constB124 ) & ( X0_13!=constB125 ) & ( X0_13!=constB126 ) & ( X0_13!=constB127 ) & ( X0_13!=constB128 ) & ( X0_13!=constB129 ) & ( X0_13!=constB130 ) & ( X0_13!=constB131 ) & ( X0_13!=constB132 ) & ( X0_13!=constB133 ) & ( X0_13!=constB134 ) & ( X0_13!=constB135 ) & ( X0_13!=constB136 ) & ( X0_13!=constB137 ) & ( X0_13!=constB138 ) & ( X0_13!=constB139 ) & ( X0_13!=constB140 ) & ( X0_13!=constB141 ) & ( X0_13!=constB142 ) & ( X0_13!=constB143 ) & ( X0_13!=constB144 ) & ( X0_13!=constB145 ) & ( X0_13!=constB146 ) & ( X0_13!=constB147 ) & ( X0_13!=constB148 ) & ( X0_13!=constB149 ) & ( X0_13!=constB150 ) & ( X0_13!=constB151 ) & ( X0_13!=constB152 ) & ( X0_13!=constB153 ) & ( X0_13!=constB154 ) & ( X0_13!=constB155 ) & ( X0_13!=constB156 ) & ( X0_13!=constB157 ) & ( X0_13!=constB158 ) & ( X0_13!=constB159 ) & ( X0_13!=constB160 ) & ( X0_13!=constB161 ) & ( X0_13!=constB162 ) & ( X0_13!=constB163 ) & ( X0_13!=constB164 ) & ( X0_13!=constB165 ) & ( X0_13!=constB166 ) & ( X0_13!=constB167 ) & ( X0_13!=constB168 ) & ( X0_13!=constB169 ) & ( X0_13!=constB170 ) & ( X0_13!=constB171 ) & ( X0_13!=constB172 ) & ( X0_13!=constB173 ) & ( X0_13!=constB174 ) & ( X0_13!=constB175 ) & ( X0_13!=constB176 ) & ( X0_13!=constB177 ) & ( X0_13!=constB178 ) & ( X0_13!=constB179 ) & ( X0_13!=constB180 ) & ( X0_13!=constB181 ) & ( X0_13!=constB182 ) & ( X0_13!=constB183 ) & ( X0_13!=constB184 ) & ( X0_13!=constB185 ) & ( X0_13!=constB186 ) & ( X0_13!=constB187 ) & ( X0_13!=constB188 ) & ( X0_13!=constB189 ) & ( X0_13!=constB190 ) & ( X0_13!=constB191 ) & ( X0_13!=constB192 ) & ( X0_13!=constB193 ) & ( X0_13!=constB194 ) & ( X0_13!=constB195 ) & ( X0_13!=constB196 ) & ( X0_13!=constB197 ) & ( X0_13!=constB198 ) & ( X0_13!=constB199 ) & ( X0_13!=constB200 ) ) | ( ( X0_12=state_type & X1_13=constB0 ) & ( X0_13!=sK0_VarCurr ) & ( X0_13!=constB1 ) & ( X0_13!=constB2 ) & ( X0_13!=constB3 ) & ( X0_13!=constB4 ) & ( X0_13!=constB5 ) & ( X0_13!=constB6 ) & ( X0_13!=constB7 ) & ( X0_13!=constB8 ) & ( X0_13!=constB9 ) & ( X0_13!=constB10 ) & ( X0_13!=constB11 ) & ( X0_13!=constB12 ) & ( X0_13!=constB13 ) & ( X0_13!=constB14 ) & ( X0_13!=constB15 ) & ( X0_13!=constB16 ) & ( X0_13!=constB17 ) & ( X0_13!=constB18 ) & ( X0_13!=constB19 ) & ( X0_13!=constB20 ) & ( X0_13!=constB21 ) & ( X0_13!=constB22 ) & ( X0_13!=constB23 ) & ( X0_13!=constB24 ) & ( X0_13!=constB25 ) & ( X0_13!=constB26 ) & ( X0_13!=constB27 ) & ( X0_13!=constB28 ) & ( X0_13!=constB29 ) & ( X0_13!=constB30 ) & ( X0_13!=constB31 ) & ( X0_13!=constB32 ) & ( X0_13!=constB33 ) & ( X0_13!=constB34 ) & ( X0_13!=constB35 ) & ( X0_13!=constB36 ) & ( X0_13!=constB37 ) & ( X0_13!=constB38 ) & ( X0_13!=constB39 ) & ( X0_13!=constB40 ) & ( X0_13!=constB41 ) & ( X0_13!=constB42 ) & ( X0_13!=constB43 ) & ( X0_13!=constB44 ) & ( X0_13!=constB45 ) & ( X0_13!=constB46 ) & ( X0_13!=constB47 ) & ( X0_13!=constB48 ) & ( X0_13!=constB49 ) & ( X0_13!=constB50 ) & ( X0_13!=constB51 ) & ( X0_13!=constB52 ) & ( X0_13!=constB53 ) & ( X0_13!=constB54 ) & ( X0_13!=constB55 ) & ( X0_13!=constB56 ) & ( X0_13!=constB57 ) & ( X0_13!=constB58 ) & ( X0_13!=constB59 ) & ( X0_13!=constB60 ) & ( X0_13!=constB61 ) & ( X0_13!=constB62 ) & ( X0_13!=constB63 ) & ( X0_13!=constB64 ) & ( X0_13!=constB65 ) & ( X0_13!=constB66 ) & ( X0_13!=constB67 ) & ( X0_13!=constB68 ) & ( X0_13!=constB69 ) & ( X0_13!=constB70 ) & ( X0_13!=constB71 ) & ( X0_13!=constB72 ) & ( X0_13!=constB73 ) & ( X0_13!=constB74 ) & ( X0_13!=constB75 ) & ( X0_13!=constB76 ) & ( X0_13!=constB77 ) & ( X0_13!=constB78 ) & ( X0_13!=constB79 ) & ( X0_13!=constB80 ) & ( X0_13!=constB81 ) & ( X0_13!=constB82 ) & ( X0_13!=constB83 ) & ( X0_13!=constB84 ) & ( X0_13!=constB85 ) & ( X0_13!=constB86 ) & ( X0_13!=constB87 ) & ( X0_13!=constB88 ) & ( X0_13!=constB89 ) & ( X0_13!=constB90 ) & ( X0_13!=constB91 ) & ( X0_13!=constB92 ) & ( X0_13!=constB93 ) & ( X0_13!=constB94 ) & ( X0_13!=constB95 ) & ( X0_13!=constB96 ) & ( X0_13!=constB97 ) & ( X0_13!=constB98 ) & ( X0_13!=constB99 ) & ( X0_13!=constB100 ) & ( X0_13!=constB101 ) & ( X0_13!=constB102 ) & ( X0_13!=constB103 ) & ( X0_13!=constB104 ) & ( X0_13!=constB105 ) & ( X0_13!=constB106 ) & ( X0_13!=constB107 ) & ( X0_13!=constB108 ) & ( X0_13!=constB109 ) & ( X0_13!=constB110 ) & ( X0_13!=constB111 ) & ( X0_13!=constB112 ) & ( X0_13!=constB113 ) & ( X0_13!=constB114 ) & ( X0_13!=constB115 ) & ( X0_13!=constB116 ) & ( X0_13!=constB117 ) & ( X0_13!=constB118 ) & ( X0_13!=constB119 ) & ( X0_13!=constB120 ) & ( X0_13!=constB121 ) & ( X0_13!=constB122 ) & ( X0_13!=constB123 ) & ( X0_13!=constB124 ) & ( X0_13!=constB125 ) & ( X0_13!=constB126 ) & ( X0_13!=constB127 ) & ( X0_13!=constB128 ) & ( X0_13!=constB129 ) & ( X0_13!=constB130 ) & ( X0_13!=constB131 ) & ( X0_13!=constB132 ) & ( X0_13!=constB133 ) & ( X0_13!=constB134 ) & ( X0_13!=constB135 ) & ( X0_13!=constB136 ) & ( X0_13!=constB137 ) & ( X0_13!=constB138 ) & ( X0_13!=constB139 ) & ( X0_13!=constB140 ) & ( X0_13!=constB141 ) & ( X0_13!=constB142 ) & ( X0_13!=constB143 ) & ( X0_13!=constB144 ) & ( X0_13!=constB145 ) & ( X0_13!=constB146 ) & ( X0_13!=constB147 ) & ( X0_13!=constB148 ) & ( X0_13!=constB149 ) & ( X0_13!=constB150 ) & ( X0_13!=constB151 ) & ( X0_13!=constB152 ) & ( X0_13!=constB153 ) & ( X0_13!=constB154 ) & ( X0_13!=constB155 ) & ( X0_13!=constB156 ) & ( X0_13!=constB157 ) & ( X0_13!=constB158 ) & ( X0_13!=constB159 ) & ( X0_13!=constB160 ) & ( X0_13!=constB161 ) & ( X0_13!=constB162 ) & ( X0_13!=constB163 ) & ( X0_13!=constB164 ) & ( X0_13!=constB165 ) & ( X0_13!=constB166 ) & ( X0_13!=constB167 ) & ( X0_13!=constB168 ) & ( X0_13!=constB169 ) & ( X0_13!=constB170 ) & ( X0_13!=constB171 ) & ( X0_13!=constB172 ) & ( X0_13!=constB173 ) & ( X0_13!=constB174 ) & ( X0_13!=constB175 ) & ( X0_13!=constB176 ) & ( X0_13!=constB177 ) & ( X0_13!=constB178 ) & ( X0_13!=constB179 ) & ( X0_13!=constB180 ) & ( X0_13!=constB181 ) & ( X0_13!=constB182 ) & ( X0_13!=constB183 ) & ( X0_13!=constB184 ) & ( X0_13!=constB185 ) & ( X0_13!=constB186 ) & ( X0_13!=constB187 ) & ( X0_13!=constB188 ) & ( X0_13!=constB189 ) & ( X0_13!=constB190 ) & ( X0_13!=constB191 ) & ( X0_13!=constB192 ) & ( X0_13!=constB193 ) & ( X0_13!=constB194 ) & ( X0_13!=constB195 ) & ( X0_13!=constB196 ) & ( X0_13!=constB197 ) & ( X0_13!=constB198 ) & ( X0_13!=constB199 ) & ( X0_13!=constB200 ) ) ) ) ) ). %------ Positive definition of v9 fof(lit_def,axiom, (! [X0_13] : ( v9(X0_13) <=> ( ( ( X0_13=sK0_VarCurr ) ) | ( ( X0_13=constB1 ) ) | ( ( X0_13=constB3 ) ) | ( ( X0_13=constB5 ) ) | ( ( X0_13=constB7 ) ) | ( ( X0_13=constB9 ) ) | ( ( X0_13=constB11 ) ) | ( ( X0_13=constB13 ) ) | ( ( X0_13=constB15 ) ) | ( ( X0_13=constB17 ) ) | ( ( X0_13=constB19 ) ) | ( ( X0_13=constB21 ) ) | ( ( X0_13=constB23 ) ) | ( ( X0_13=constB25 ) ) | ( ( X0_13=constB27 ) ) | ( ( X0_13=constB29 ) ) | ( ( X0_13=constB31 ) ) | ( ( X0_13=constB33 ) ) | ( ( X0_13=constB35 ) ) | ( ( X0_13=constB37 ) ) | ( ( X0_13=constB39 ) ) | ( ( X0_13=constB41 ) ) | ( ( X0_13=constB43 ) ) | ( ( X0_13=constB45 ) ) | ( ( X0_13=constB47 ) ) | ( ( X0_13=constB49 ) ) | ( ( X0_13=constB51 ) ) | ( ( X0_13=constB53 ) ) | ( ( X0_13=constB55 ) ) | ( ( X0_13=constB57 ) ) | ( ( X0_13=constB59 ) ) | ( ( X0_13=constB61 ) ) | ( ( X0_13=constB63 ) ) | ( ( X0_13=constB65 ) ) | ( ( X0_13=constB67 ) ) | ( ( X0_13=constB69 ) ) | ( ( X0_13=constB71 ) ) | ( ( X0_13=constB73 ) ) | ( ( X0_13=constB75 ) ) | ( ( X0_13=constB77 ) ) | ( ( X0_13=constB79 ) ) | ( ( X0_13=constB81 ) ) | ( ( X0_13=constB83 ) ) | ( ( X0_13=constB85 ) ) | ( ( X0_13=constB87 ) ) | ( ( X0_13=constB89 ) ) | ( ( X0_13=constB91 ) ) | ( ( X0_13=constB93 ) ) | ( ( X0_13=constB95 ) ) | ( ( X0_13=constB97 ) ) | ( ( X0_13=constB99 ) ) | ( ( X0_13=constB101 ) ) | ( ( X0_13=constB103 ) ) | ( ( X0_13=constB105 ) ) | ( ( X0_13=constB107 ) ) | ( ( X0_13=constB109 ) ) | ( ( X0_13=constB111 ) ) | ( ( X0_13=constB113 ) ) | ( ( X0_13=constB115 ) ) | ( ( X0_13=constB117 ) ) | ( ( X0_13=constB119 ) ) | ( ( X0_13=constB121 ) ) | ( ( X0_13=constB123 ) ) | ( ( X0_13=constB125 ) ) | ( ( X0_13=constB127 ) ) | ( ( X0_13=constB129 ) ) | ( ( X0_13=constB131 ) ) | ( ( X0_13=constB133 ) ) | ( ( X0_13=constB135 ) ) | ( ( X0_13=constB137 ) ) | ( ( X0_13=constB139 ) ) | ( ( X0_13=constB141 ) ) | ( ( X0_13=constB143 ) ) | ( ( X0_13=constB145 ) ) | ( ( X0_13=constB147 ) ) | ( ( X0_13=constB149 ) ) | ( ( X0_13=constB151 ) ) | ( ( X0_13=constB153 ) ) | ( ( X0_13=constB155 ) ) | ( ( X0_13=constB157 ) ) | ( ( X0_13=constB159 ) ) | ( ( X0_13=constB161 ) ) | ( ( X0_13=constB163 ) ) | ( ( X0_13=constB165 ) ) | ( ( X0_13=constB167 ) ) | ( ( X0_13=constB169 ) ) | ( ( X0_13=constB171 ) ) | ( ( X0_13=constB173 ) ) | ( ( X0_13=constB175 ) ) | ( ( X0_13=constB177 ) ) | ( ( X0_13=constB179 ) ) | ( ( X0_13=constB181 ) ) | ( ( X0_13=constB183 ) ) | ( ( X0_13=constB185 ) ) | ( ( X0_13=constB187 ) ) | ( ( X0_13=constB189 ) ) | ( ( X0_13=constB191 ) ) | ( ( X0_13=constB193 ) ) | ( ( X0_13=constB195 ) ) | ( ( X0_13=constB197 ) ) | ( ( X0_13=constB199 ) ) ) ) ) ). %------ Negative definition of v13 fof(lit_def,axiom, (! [X0_13] : ( ~(v13(X0_13)) <=> ( ( ( X0_13=sK0_VarCurr ) ) | ( ( X0_13=constB1 ) ) | ( ( X0_13=constB3 ) ) | ( ( X0_13=constB5 ) ) | ( ( X0_13=constB7 ) ) | ( ( X0_13=constB9 ) ) | ( ( X0_13=constB11 ) ) | ( ( X0_13=constB13 ) ) | ( ( X0_13=constB15 ) ) | ( ( X0_13=constB17 ) ) | ( ( X0_13=constB19 ) ) | ( ( X0_13=constB21 ) ) | ( ( X0_13=constB23 ) ) | ( ( X0_13=constB25 ) ) | ( ( X0_13=constB27 ) ) | ( ( X0_13=constB29 ) ) | ( ( X0_13=constB31 ) ) | ( ( X0_13=constB33 ) ) | ( ( X0_13=constB35 ) ) | ( ( X0_13=constB37 ) ) | ( ( X0_13=constB39 ) ) | ( ( X0_13=constB41 ) ) | ( ( X0_13=constB43 ) ) | ( ( X0_13=constB45 ) ) | ( ( X0_13=constB47 ) ) | ( ( X0_13=constB49 ) ) | ( ( X0_13=constB51 ) ) | ( ( X0_13=constB53 ) ) | ( ( X0_13=constB55 ) ) | ( ( X0_13=constB57 ) ) | ( ( X0_13=constB59 ) ) | ( ( X0_13=constB61 ) ) | ( ( X0_13=constB63 ) ) | ( ( X0_13=constB65 ) ) | ( ( X0_13=constB67 ) ) | ( ( X0_13=constB69 ) ) | ( ( X0_13=constB71 ) ) | ( ( X0_13=constB73 ) ) | ( ( X0_13=constB75 ) ) | ( ( X0_13=constB77 ) ) | ( ( X0_13=constB79 ) ) | ( ( X0_13=constB81 ) ) | ( ( X0_13=constB83 ) ) | ( ( X0_13=constB85 ) ) | ( ( X0_13=constB87 ) ) | ( ( X0_13=constB89 ) ) | ( ( X0_13=constB91 ) ) | ( ( X0_13=constB93 ) ) | ( ( X0_13=constB95 ) ) | ( ( X0_13=constB97 ) ) | ( ( X0_13=constB99 ) ) | ( ( X0_13=constB101 ) ) | ( ( X0_13=constB103 ) ) | ( ( X0_13=constB105 ) ) | ( ( X0_13=constB107 ) ) | ( ( X0_13=constB109 ) ) | ( ( X0_13=constB111 ) ) | ( ( X0_13=constB113 ) ) | ( ( X0_13=constB115 ) ) | ( ( X0_13=constB117 ) ) | ( ( X0_13=constB119 ) ) | ( ( X0_13=constB121 ) ) | ( ( X0_13=constB123 ) ) | ( ( X0_13=constB125 ) ) | ( ( X0_13=constB127 ) ) | ( ( X0_13=constB129 ) ) | ( ( X0_13=constB131 ) ) | ( ( X0_13=constB133 ) ) | ( ( X0_13=constB135 ) ) | ( ( X0_13=constB137 ) ) | ( ( X0_13=constB139 ) ) | ( ( X0_13=constB141 ) ) | ( ( X0_13=constB143 ) ) | ( ( X0_13=constB145 ) ) | ( ( X0_13=constB147 ) ) | ( ( X0_13=constB149 ) ) | ( ( X0_13=constB151 ) ) | ( ( X0_13=constB153 ) ) | ( ( X0_13=constB155 ) ) | ( ( X0_13=constB157 ) ) | ( ( X0_13=constB159 ) ) | ( ( X0_13=constB161 ) ) | ( ( X0_13=constB163 ) ) | ( ( X0_13=constB165 ) ) | ( ( X0_13=constB167 ) ) | ( ( X0_13=constB169 ) ) | ( ( X0_13=constB171 ) ) | ( ( X0_13=constB173 ) ) | ( ( X0_13=constB175 ) ) | ( ( X0_13=constB177 ) ) | ( ( X0_13=constB179 ) ) | ( ( X0_13=constB181 ) ) | ( ( X0_13=constB183 ) ) | ( ( X0_13=constB185 ) ) | ( ( X0_13=constB187 ) ) | ( ( X0_13=constB189 ) ) | ( ( X0_13=constB191 ) ) | ( ( X0_13=constB193 ) ) | ( ( X0_13=constB195 ) ) | ( ( X0_13=constB197 ) ) | ( ( X0_13=constB199 ) ) ) ) ) ). %------ Positive definition of nextState fof(lit_def,axiom, (! [X0_13,X1_13] : ( nextState(X0_13,X1_13) <=> ( ( ( X0_13=constB0 & X1_13=constB1 ) ) | ( ( X0_13=sK0_VarCurr & X1_13=constB196 ) ) | ( ( X0_13=constB1 & X1_13=constB2 ) ) | ( ( X0_13=constB2 & X1_13=constB3 ) ) | ( ( X0_13=constB3 & X1_13=constB4 ) ) | ( ( X0_13=constB4 & X1_13=constB5 ) ) | ( ( X0_13=constB5 & X1_13=constB6 ) ) | ( ( X0_13=constB6 & X1_13=constB7 ) ) | ( ( X0_13=constB7 & X1_13=constB8 ) ) | ( ( X0_13=constB8 & X1_13=constB9 ) ) | ( ( X0_13=constB9 & X1_13=constB10 ) ) | ( ( X0_13=constB10 & X1_13=constB11 ) ) | ( ( X0_13=constB11 & X1_13=constB12 ) ) | ( ( X0_13=constB12 & X1_13=constB13 ) ) | ( ( X0_13=constB13 & X1_13=constB14 ) ) | ( ( X0_13=constB14 & X1_13=constB15 ) ) | ( ( X0_13=constB15 & X1_13=constB16 ) ) | ( ( X0_13=constB16 & X1_13=constB17 ) ) | ( ( X0_13=constB17 & X1_13=constB18 ) ) | ( ( X0_13=constB18 & X1_13=constB19 ) ) | ( ( X0_13=constB19 & X1_13=constB20 ) ) | ( ( X0_13=constB20 & X1_13=constB21 ) ) | ( ( X0_13=constB21 & X1_13=constB22 ) ) | ( ( X0_13=constB22 & X1_13=constB23 ) ) | ( ( X0_13=constB23 & X1_13=constB24 ) ) | ( ( X0_13=constB24 & X1_13=constB25 ) ) | ( ( X0_13=constB25 & X1_13=constB26 ) ) | ( ( X0_13=constB26 & X1_13=constB27 ) ) | ( ( X0_13=constB27 & X1_13=constB28 ) ) | ( ( X0_13=constB28 & X1_13=constB29 ) ) | ( ( X0_13=constB29 & X1_13=constB30 ) ) | ( ( X0_13=constB30 & X1_13=constB31 ) ) | ( ( X0_13=constB31 & X1_13=constB32 ) ) | ( ( X0_13=constB32 & X1_13=constB33 ) ) | ( ( X0_13=constB33 & X1_13=constB34 ) ) | ( ( X0_13=constB34 & X1_13=constB35 ) ) | ( ( X0_13=constB35 & X1_13=constB36 ) ) | ( ( X0_13=constB36 & X1_13=constB37 ) ) | ( ( X0_13=constB37 & X1_13=constB38 ) ) | ( ( X0_13=constB38 & X1_13=constB39 ) ) | ( ( X0_13=constB39 & X1_13=constB40 ) ) | ( ( X0_13=constB40 & X1_13=constB41 ) ) | ( ( X0_13=constB41 & X1_13=constB42 ) ) | ( ( X0_13=constB42 & X1_13=constB43 ) ) | ( ( X0_13=constB43 & X1_13=constB44 ) ) | ( ( X0_13=constB44 & X1_13=constB45 ) ) | ( ( X0_13=constB45 & X1_13=constB46 ) ) | ( ( X0_13=constB46 & X1_13=constB47 ) ) | ( ( X0_13=constB47 & X1_13=constB48 ) ) | ( ( X0_13=constB48 & X1_13=constB49 ) ) | ( ( X0_13=constB49 & X1_13=constB50 ) ) | ( ( X0_13=constB50 & X1_13=constB51 ) ) | ( ( X0_13=constB51 & X1_13=constB52 ) ) | ( ( X0_13=constB52 & X1_13=constB53 ) ) | ( ( X0_13=constB53 & X1_13=constB54 ) ) | ( ( X0_13=constB54 & X1_13=constB55 ) ) | ( ( X0_13=constB55 & X1_13=constB56 ) ) | ( ( X0_13=constB56 & X1_13=constB57 ) ) | ( ( X0_13=constB57 & X1_13=constB58 ) ) | ( ( X0_13=constB58 & X1_13=constB59 ) ) | ( ( X0_13=constB59 & X1_13=constB60 ) ) | ( ( X0_13=constB60 & X1_13=constB61 ) ) | ( ( X0_13=constB61 & X1_13=constB62 ) ) | ( ( X0_13=constB62 & X1_13=constB63 ) ) | ( ( X0_13=constB63 & X1_13=constB64 ) ) | ( ( X0_13=constB64 & X1_13=constB65 ) ) | ( ( X0_13=constB65 & X1_13=constB66 ) ) | ( ( X0_13=constB66 & X1_13=constB67 ) ) | ( ( X0_13=constB67 & X1_13=constB68 ) ) | ( ( X0_13=constB68 & X1_13=constB69 ) ) | ( ( X0_13=constB69 & X1_13=constB70 ) ) | ( ( X0_13=constB70 & X1_13=constB71 ) ) | ( ( X0_13=constB71 & X1_13=constB72 ) ) | ( ( X0_13=constB72 & X1_13=constB73 ) ) | ( ( X0_13=constB73 & X1_13=constB74 ) ) | ( ( X0_13=constB74 & X1_13=constB75 ) ) | ( ( X0_13=constB75 & X1_13=constB76 ) ) | ( ( X0_13=constB76 & X1_13=constB77 ) ) | ( ( X0_13=constB77 & X1_13=constB78 ) ) | ( ( X0_13=constB78 & X1_13=constB79 ) ) | ( ( X0_13=constB79 & X1_13=constB80 ) ) | ( ( X0_13=constB80 & X1_13=constB81 ) ) | ( ( X0_13=constB81 & X1_13=constB82 ) ) | ( ( X0_13=constB82 & X1_13=constB83 ) ) | ( ( X0_13=constB83 & X1_13=constB84 ) ) | ( ( X0_13=constB84 & X1_13=constB85 ) ) | ( ( X0_13=constB85 & X1_13=constB86 ) ) | ( ( X0_13=constB86 & X1_13=constB87 ) ) | ( ( X0_13=constB87 & X1_13=constB88 ) ) | ( ( X0_13=constB88 & X1_13=constB89 ) ) | ( ( X0_13=constB89 & X1_13=constB90 ) ) | ( ( X0_13=constB90 & X1_13=constB91 ) ) | ( ( X0_13=constB91 & X1_13=constB92 ) ) | ( ( X0_13=constB92 & X1_13=constB93 ) ) | ( ( X0_13=constB93 & X1_13=constB94 ) ) | ( ( X0_13=constB94 & X1_13=constB95 ) ) | ( ( X0_13=constB95 & X1_13=constB96 ) ) | ( ( X0_13=constB96 & X1_13=constB97 ) ) | ( ( X0_13=constB97 & X1_13=constB98 ) ) | ( ( X0_13=constB98 & X1_13=constB99 ) ) | ( ( X0_13=constB99 & X1_13=constB100 ) ) | ( ( X0_13=constB100 & X1_13=constB101 ) ) | ( ( X0_13=constB101 & X1_13=constB102 ) ) | ( ( X0_13=constB102 & X1_13=constB103 ) ) | ( ( X0_13=constB103 & X1_13=constB104 ) ) | ( ( X0_13=constB104 & X1_13=constB105 ) ) | ( ( X0_13=constB105 & X1_13=constB106 ) ) | ( ( X0_13=constB106 & X1_13=constB107 ) ) | ( ( X0_13=constB107 & X1_13=constB108 ) ) | ( ( X0_13=constB108 & X1_13=constB109 ) ) | ( ( X0_13=constB109 & X1_13=constB110 ) ) | ( ( X0_13=constB110 & X1_13=constB111 ) ) | ( ( X0_13=constB111 & X1_13=constB112 ) ) | ( ( X0_13=constB112 & X1_13=constB113 ) ) | ( ( X0_13=constB113 & X1_13=constB114 ) ) | ( ( X0_13=constB114 & X1_13=constB115 ) ) | ( ( X0_13=constB115 & X1_13=constB116 ) ) | ( ( X0_13=constB116 & X1_13=constB117 ) ) | ( ( X0_13=constB117 & X1_13=constB118 ) ) | ( ( X0_13=constB118 & X1_13=constB119 ) ) | ( ( X0_13=constB119 & X1_13=constB120 ) ) | ( ( X0_13=constB120 & X1_13=constB121 ) ) | ( ( X0_13=constB121 & X1_13=constB122 ) ) | ( ( X0_13=constB122 & X1_13=constB123 ) ) | ( ( X0_13=constB123 & X1_13=constB124 ) ) | ( ( X0_13=constB124 & X1_13=constB125 ) ) | ( ( X0_13=constB125 & X1_13=constB126 ) ) | ( ( X0_13=constB126 & X1_13=constB127 ) ) | ( ( X0_13=constB127 & X1_13=constB128 ) ) | ( ( X0_13=constB128 & X1_13=constB129 ) ) | ( ( X0_13=constB129 & X1_13=constB130 ) ) | ( ( X0_13=constB130 & X1_13=constB131 ) ) | ( ( X0_13=constB131 & X1_13=constB132 ) ) | ( ( X0_13=constB132 & X1_13=constB133 ) ) | ( ( X0_13=constB133 & X1_13=constB134 ) ) | ( ( X0_13=constB134 & X1_13=constB135 ) ) | ( ( X0_13=constB135 & X1_13=constB136 ) ) | ( ( X0_13=constB136 & X1_13=constB137 ) ) | ( ( X0_13=constB137 & X1_13=constB138 ) ) | ( ( X0_13=constB138 & X1_13=constB139 ) ) | ( ( X0_13=constB139 & X1_13=constB140 ) ) | ( ( X0_13=constB140 & X1_13=constB141 ) ) | ( ( X0_13=constB141 & X1_13=constB142 ) ) | ( ( X0_13=constB142 & X1_13=constB143 ) ) | ( ( X0_13=constB143 & X1_13=constB144 ) ) | ( ( X0_13=constB144 & X1_13=constB145 ) ) | ( ( X0_13=constB145 & X1_13=constB146 ) ) | ( ( X0_13=constB146 & X1_13=constB147 ) ) | ( ( X0_13=constB147 & X1_13=constB148 ) ) | ( ( X0_13=constB148 & X1_13=constB149 ) ) | ( ( X0_13=constB149 & X1_13=constB150 ) ) | ( ( X0_13=constB150 & X1_13=constB151 ) ) | ( ( X0_13=constB151 & X1_13=constB152 ) ) | ( ( X0_13=constB152 & X1_13=constB153 ) ) | ( ( X0_13=constB153 & X1_13=constB154 ) ) | ( ( X0_13=constB154 & X1_13=constB155 ) ) | ( ( X0_13=constB155 & X1_13=constB156 ) ) | ( ( X0_13=constB156 & X1_13=constB157 ) ) | ( ( X0_13=constB157 & X1_13=constB158 ) ) | ( ( X0_13=constB158 & X1_13=constB159 ) ) | ( ( X0_13=constB159 & X1_13=constB160 ) ) | ( ( X0_13=constB160 & X1_13=constB161 ) ) | ( ( X0_13=constB161 & X1_13=constB162 ) ) | ( ( X0_13=constB162 & X1_13=constB163 ) ) | ( ( X0_13=constB163 & X1_13=constB164 ) ) | ( ( X0_13=constB164 & X1_13=constB165 ) ) | ( ( X0_13=constB165 & X1_13=constB166 ) ) | ( ( X0_13=constB166 & X1_13=constB167 ) ) | ( ( X0_13=constB167 & X1_13=constB168 ) ) | ( ( X0_13=constB168 & X1_13=constB169 ) ) | ( ( X0_13=constB169 & X1_13=constB170 ) ) | ( ( X0_13=constB170 & X1_13=constB171 ) ) | ( ( X0_13=constB171 & X1_13=constB172 ) ) | ( ( X0_13=constB172 & X1_13=constB173 ) ) | ( ( X0_13=constB173 & X1_13=constB174 ) ) | ( ( X0_13=constB174 & X1_13=constB175 ) ) | ( ( X0_13=constB175 & X1_13=constB176 ) ) | ( ( X0_13=constB176 & X1_13=constB177 ) ) | ( ( X0_13=constB177 & X1_13=constB8 ) ) | ( ( X0_13=constB177 & X1_13=constB178 ) ) | ( ( X0_13=constB178 & X1_13=constB179 ) ) | ( ( X0_13=constB179 & X1_13=constB180 ) ) | ( ( X0_13=constB180 & X1_13=constB181 ) ) | ( ( X0_13=constB181 & X1_13=constB182 ) ) | ( ( X0_13=constB182 & X1_13=constB183 ) ) | ( ( X0_13=constB183 & X1_13=constB184 ) ) | ( ( X0_13=constB184 & X1_13=constB185 ) ) | ( ( X0_13=constB185 & X1_13=constB186 ) ) | ( ( X0_13=constB186 & X1_13=constB187 ) ) | ( ( X0_13=constB187 & X1_13=constB188 ) ) | ( ( X0_13=constB188 & X1_13=constB189 ) ) | ( ( X0_13=constB189 & X1_13=constB170 ) ) | ( ( X0_13=constB189 & X1_13=constB190 ) ) | ( ( X0_13=constB190 & X1_13=constB191 ) ) | ( ( X0_13=constB191 & X1_13=constB192 ) ) | ( ( X0_13=constB192 & X1_13=constB193 ) ) | ( ( X0_13=constB193 & X1_13=constB194 ) ) | ( ( X0_13=constB194 & X1_13=sK0_VarCurr ) ) | ( ( X0_13=constB194 & X1_13=constB195 ) ) | ( ( X0_13=constB195 & X1_13=constB196 ) ) | ( ( X0_13=constB196 & X1_13=constB197 ) ) | ( ( X0_13=constB197 & X1_13=constB198 ) ) | ( ( X0_13=constB198 & X1_13=constB199 ) ) | ( ( X0_13=constB199 & X1_13=constB200 ) ) | ( ( X1_13=constB1 ) & ( X0_13!=sK0_VarCurr ) & ( X0_13!=constB1 ) & ( X0_13!=constB2 ) & ( X0_13!=constB3 ) & ( X0_13!=constB4 ) & ( X0_13!=constB5 ) & ( X0_13!=constB6 ) & ( X0_13!=constB7 ) & ( X0_13!=constB8 ) & ( X0_13!=constB9 ) & ( X0_13!=constB10 ) & ( X0_13!=constB11 ) & ( X0_13!=constB12 ) & ( X0_13!=constB13 ) & ( X0_13!=constB14 ) & ( X0_13!=constB15 ) & ( X0_13!=constB16 ) & ( X0_13!=constB17 ) & ( X0_13!=constB18 ) & ( X0_13!=constB19 ) & ( X0_13!=constB20 ) & ( X0_13!=constB21 ) & ( X0_13!=constB22 ) & ( X0_13!=constB23 ) & ( X0_13!=constB24 ) & ( X0_13!=constB25 ) & ( X0_13!=constB26 ) & ( X0_13!=constB27 ) & ( X0_13!=constB28 ) & ( X0_13!=constB29 ) & ( X0_13!=constB30 ) & ( X0_13!=constB31 ) & ( X0_13!=constB32 ) & ( X0_13!=constB33 ) & ( X0_13!=constB34 ) & ( X0_13!=constB35 ) & ( X0_13!=constB36 ) & ( X0_13!=constB37 ) & ( X0_13!=constB38 ) & ( X0_13!=constB39 ) & ( X0_13!=constB40 ) & ( X0_13!=constB41 ) & ( X0_13!=constB42 ) & ( X0_13!=constB43 ) & ( X0_13!=constB44 ) & ( X0_13!=constB45 ) & ( X0_13!=constB46 ) & ( X0_13!=constB47 ) & ( X0_13!=constB48 ) & ( X0_13!=constB49 ) & ( X0_13!=constB50 ) & ( X0_13!=constB51 ) & ( X0_13!=constB52 ) & ( X0_13!=constB53 ) & ( X0_13!=constB54 ) & ( X0_13!=constB55 ) & ( X0_13!=constB56 ) & ( X0_13!=constB57 ) & ( X0_13!=constB58 ) & ( X0_13!=constB59 ) & ( X0_13!=constB60 ) & ( X0_13!=constB61 ) & ( X0_13!=constB62 ) & ( X0_13!=constB63 ) & ( X0_13!=constB64 ) & ( X0_13!=constB65 ) & ( X0_13!=constB66 ) & ( X0_13!=constB67 ) & ( X0_13!=constB68 ) & ( X0_13!=constB69 ) & ( X0_13!=constB70 ) & ( X0_13!=constB71 ) & ( X0_13!=constB72 ) & ( X0_13!=constB73 ) & ( X0_13!=constB74 ) & ( X0_13!=constB75 ) & ( X0_13!=constB76 ) & ( X0_13!=constB77 ) & ( X0_13!=constB78 ) & ( X0_13!=constB79 ) & ( X0_13!=constB80 ) & ( X0_13!=constB81 ) & ( X0_13!=constB82 ) & ( X0_13!=constB83 ) & ( X0_13!=constB84 ) & ( X0_13!=constB85 ) & ( X0_13!=constB86 ) & ( X0_13!=constB87 ) & ( X0_13!=constB88 ) & ( X0_13!=constB89 ) & ( X0_13!=constB90 ) & ( X0_13!=constB91 ) & ( X0_13!=constB92 ) & ( X0_13!=constB93 ) & ( X0_13!=constB94 ) & ( X0_13!=constB95 ) & ( X0_13!=constB96 ) & ( X0_13!=constB97 ) & ( X0_13!=constB98 ) & ( X0_13!=constB99 ) & ( X0_13!=constB100 ) & ( X0_13!=constB101 ) & ( X0_13!=constB102 ) & ( X0_13!=constB103 ) & ( X0_13!=constB104 ) & ( X0_13!=constB105 ) & ( X0_13!=constB106 ) & ( X0_13!=constB107 ) & ( X0_13!=constB108 ) & ( X0_13!=constB109 ) & ( X0_13!=constB110 ) & ( X0_13!=constB111 ) & ( X0_13!=constB112 ) & ( X0_13!=constB113 ) & ( X0_13!=constB114 ) & ( X0_13!=constB115 ) & ( X0_13!=constB116 ) & ( X0_13!=constB117 ) & ( X0_13!=constB118 ) & ( X0_13!=constB119 ) & ( X0_13!=constB120 ) & ( X0_13!=constB121 ) & ( X0_13!=constB122 ) & ( X0_13!=constB123 ) & ( X0_13!=constB124 ) & ( X0_13!=constB125 ) & ( X0_13!=constB126 ) & ( X0_13!=constB127 ) & ( X0_13!=constB128 ) & ( X0_13!=constB129 ) & ( X0_13!=constB130 ) & ( X0_13!=constB131 ) & ( X0_13!=constB132 ) & ( X0_13!=constB133 ) & ( X0_13!=constB134 ) & ( X0_13!=constB135 ) & ( X0_13!=constB136 ) & ( X0_13!=constB137 ) & ( X0_13!=constB138 ) & ( X0_13!=constB139 ) & ( X0_13!=constB140 ) & ( X0_13!=constB141 ) & ( X0_13!=constB142 ) & ( X0_13!=constB143 ) & ( X0_13!=constB144 ) & ( X0_13!=constB145 ) & ( X0_13!=constB146 ) & ( X0_13!=constB147 ) & ( X0_13!=constB148 ) & ( X0_13!=constB149 ) & ( X0_13!=constB150 ) & ( X0_13!=constB151 ) & ( X0_13!=constB152 ) & ( X0_13!=constB153 ) & ( X0_13!=constB154 ) & ( X0_13!=constB155 ) & ( X0_13!=constB156 ) & ( X0_13!=constB157 ) & ( X0_13!=constB158 ) & ( X0_13!=constB159 ) & ( X0_13!=constB160 ) & ( X0_13!=constB161 ) & ( X0_13!=constB162 ) & ( X0_13!=constB163 ) & ( X0_13!=constB164 ) & ( X0_13!=constB165 ) & ( X0_13!=constB166 ) & ( X0_13!=constB167 ) & ( X0_13!=constB168 ) & ( X0_13!=constB169 ) & ( X0_13!=constB170 ) & ( X0_13!=constB171 ) & ( X0_13!=constB172 ) & ( X0_13!=constB173 ) & ( X0_13!=constB174 ) & ( X0_13!=constB175 ) & ( X0_13!=constB176 ) & ( X0_13!=constB177 ) & ( X0_13!=constB178 ) & ( X0_13!=constB179 ) & ( X0_13!=constB180 ) & ( X0_13!=constB181 ) & ( X0_13!=constB182 ) & ( X0_13!=constB183 ) & ( X0_13!=constB184 ) & ( X0_13!=constB185 ) & ( X0_13!=constB186 ) & ( X0_13!=constB187 ) & ( X0_13!=constB188 ) & ( X0_13!=constB189 ) & ( X0_13!=constB190 ) & ( X0_13!=constB191 ) & ( X0_13!=constB192 ) & ( X0_13!=constB193 ) & ( X0_13!=constB194 ) & ( X0_13!=constB195 ) & ( X0_13!=constB196 ) & ( X0_13!=constB197 ) & ( X0_13!=constB198 ) & ( X0_13!=constB199 ) & ( X0_13!=constB200 ) ) ) ) ) ). %------ Negative definition of v1 fof(lit_def,axiom, (! [X0_13] : ( ~(v1(X0_13)) <=> ( ( ( X0_13=sK0_VarCurr ) ) | ( ( X0_13=constB1 ) ) | ( ( X0_13=constB3 ) ) | ( ( X0_13=constB5 ) ) | ( ( X0_13=constB7 ) ) | ( ( X0_13=constB9 ) ) | ( ( X0_13=constB11 ) ) | ( ( X0_13=constB13 ) ) | ( ( X0_13=constB15 ) ) | ( ( X0_13=constB17 ) ) | ( ( X0_13=constB19 ) ) | ( ( X0_13=constB21 ) ) | ( ( X0_13=constB23 ) ) | ( ( X0_13=constB25 ) ) | ( ( X0_13=constB27 ) ) | ( ( X0_13=constB29 ) ) | ( ( X0_13=constB31 ) ) | ( ( X0_13=constB33 ) ) | ( ( X0_13=constB35 ) ) | ( ( X0_13=constB37 ) ) | ( ( X0_13=constB39 ) ) | ( ( X0_13=constB41 ) ) | ( ( X0_13=constB43 ) ) | ( ( X0_13=constB45 ) ) | ( ( X0_13=constB47 ) ) | ( ( X0_13=constB49 ) ) | ( ( X0_13=constB51 ) ) | ( ( X0_13=constB53 ) ) | ( ( X0_13=constB55 ) ) | ( ( X0_13=constB57 ) ) | ( ( X0_13=constB59 ) ) | ( ( X0_13=constB61 ) ) | ( ( X0_13=constB63 ) ) | ( ( X0_13=constB65 ) ) | ( ( X0_13=constB67 ) ) | ( ( X0_13=constB69 ) ) | ( ( X0_13=constB71 ) ) | ( ( X0_13=constB73 ) ) | ( ( X0_13=constB75 ) ) | ( ( X0_13=constB77 ) ) | ( ( X0_13=constB79 ) ) | ( ( X0_13=constB81 ) ) | ( ( X0_13=constB83 ) ) | ( ( X0_13=constB85 ) ) | ( ( X0_13=constB87 ) ) | ( ( X0_13=constB89 ) ) | ( ( X0_13=constB91 ) ) | ( ( X0_13=constB93 ) ) | ( ( X0_13=constB95 ) ) | ( ( X0_13=constB97 ) ) | ( ( X0_13=constB99 ) ) | ( ( X0_13=constB101 ) ) | ( ( X0_13=constB103 ) ) | ( ( X0_13=constB105 ) ) | ( ( X0_13=constB107 ) ) | ( ( X0_13=constB109 ) ) | ( ( X0_13=constB111 ) ) | ( ( X0_13=constB113 ) ) | ( ( X0_13=constB115 ) ) | ( ( X0_13=constB117 ) ) | ( ( X0_13=constB119 ) ) | ( ( X0_13=constB121 ) ) | ( ( X0_13=constB123 ) ) | ( ( X0_13=constB125 ) ) | ( ( X0_13=constB127 ) ) | ( ( X0_13=constB129 ) ) | ( ( X0_13=constB131 ) ) | ( ( X0_13=constB133 ) ) | ( ( X0_13=constB135 ) ) | ( ( X0_13=constB137 ) ) | ( ( X0_13=constB139 ) ) | ( ( X0_13=constB141 ) ) | ( ( X0_13=constB143 ) ) | ( ( X0_13=constB145 ) ) | ( ( X0_13=constB147 ) ) | ( ( X0_13=constB149 ) ) | ( ( X0_13=constB151 ) ) | ( ( X0_13=constB153 ) ) | ( ( X0_13=constB155 ) ) | ( ( X0_13=constB157 ) ) | ( ( X0_13=constB159 ) ) | ( ( X0_13=constB161 ) ) | ( ( X0_13=constB163 ) ) | ( ( X0_13=constB165 ) ) | ( ( X0_13=constB167 ) ) | ( ( X0_13=constB169 ) ) | ( ( X0_13=constB171 ) ) | ( ( X0_13=constB173 ) ) | ( ( X0_13=constB175 ) ) | ( ( X0_13=constB177 ) ) | ( ( X0_13=constB179 ) ) | ( ( X0_13=constB181 ) ) | ( ( X0_13=constB183 ) ) | ( ( X0_13=constB185 ) ) | ( ( X0_13=constB187 ) ) | ( ( X0_13=constB189 ) ) | ( ( X0_13=constB191 ) ) | ( ( X0_13=constB193 ) ) | ( ( X0_13=constB195 ) ) | ( ( X0_13=constB197 ) ) | ( ( X0_13=constB199 ) ) ) ) ) ). %------ Negative definition of v34 fof(lit_def,axiom, (! [X0_13] : ( ~(v34(X0_13)) <=> ( ( ( X0_13=sK0_VarCurr ) ) | ( ( X0_13=constB1 ) ) | ( ( X0_13=constB2 ) ) | ( ( X0_13=constB3 ) ) | ( ( X0_13=constB4 ) ) | ( ( X0_13=constB5 ) ) | ( ( X0_13=constB6 ) ) | ( ( X0_13=constB7 ) ) | ( ( X0_13=constB8 ) ) | ( ( X0_13=constB9 ) ) | ( ( X0_13=constB10 ) ) | ( ( X0_13=constB11 ) ) | ( ( X0_13=constB12 ) ) | ( ( X0_13=constB13 ) ) | ( ( X0_13=constB14 ) ) | ( ( X0_13=constB15 ) ) | ( ( X0_13=constB16 ) ) | ( ( X0_13=constB17 ) ) | ( ( X0_13=constB18 ) ) | ( ( X0_13=constB19 ) ) | ( ( X0_13=constB20 ) ) | ( ( X0_13=constB21 ) ) | ( ( X0_13=constB22 ) ) | ( ( X0_13=constB23 ) ) | ( ( X0_13=constB24 ) ) | ( ( X0_13=constB25 ) ) | ( ( X0_13=constB26 ) ) | ( ( X0_13=constB27 ) ) | ( ( X0_13=constB28 ) ) | ( ( X0_13=constB29 ) ) | ( ( X0_13=constB30 ) ) | ( ( X0_13=constB31 ) ) | ( ( X0_13=constB32 ) ) | ( ( X0_13=constB33 ) ) | ( ( X0_13=constB34 ) ) | ( ( X0_13=constB35 ) ) | ( ( X0_13=constB36 ) ) | ( ( X0_13=constB37 ) ) | ( ( X0_13=constB38 ) ) | ( ( X0_13=constB39 ) ) | ( ( X0_13=constB40 ) ) | ( ( X0_13=constB41 ) ) | ( ( X0_13=constB42 ) ) | ( ( X0_13=constB43 ) ) | ( ( X0_13=constB44 ) ) | ( ( X0_13=constB45 ) ) | ( ( X0_13=constB46 ) ) | ( ( X0_13=constB47 ) ) | ( ( X0_13=constB48 ) ) | ( ( X0_13=constB49 ) ) | ( ( X0_13=constB50 ) ) | ( ( X0_13=constB51 ) ) | ( ( X0_13=constB52 ) ) | ( ( X0_13=constB53 ) ) | ( ( X0_13=constB54 ) ) | ( ( X0_13=constB55 ) ) | ( ( X0_13=constB56 ) ) | ( ( X0_13=constB57 ) ) | ( ( X0_13=constB58 ) ) | ( ( X0_13=constB59 ) ) | ( ( X0_13=constB60 ) ) | ( ( X0_13=constB61 ) ) | ( ( X0_13=constB62 ) ) | ( ( X0_13=constB63 ) ) | ( ( X0_13=constB64 ) ) | ( ( X0_13=constB65 ) ) | ( ( X0_13=constB66 ) ) | ( ( X0_13=constB67 ) ) | ( ( X0_13=constB68 ) ) | ( ( X0_13=constB69 ) ) | ( ( X0_13=constB70 ) ) | ( ( X0_13=constB71 ) ) | ( ( X0_13=constB72 ) ) | ( ( X0_13=constB73 ) ) | ( ( X0_13=constB74 ) ) | ( ( X0_13=constB75 ) ) | ( ( X0_13=constB76 ) ) | ( ( X0_13=constB77 ) ) | ( ( X0_13=constB78 ) ) | ( ( X0_13=constB79 ) ) | ( ( X0_13=constB80 ) ) | ( ( X0_13=constB81 ) ) | ( ( X0_13=constB82 ) ) | ( ( X0_13=constB83 ) ) | ( ( X0_13=constB84 ) ) | ( ( X0_13=constB85 ) ) | ( ( X0_13=constB86 ) ) | ( ( X0_13=constB87 ) ) | ( ( X0_13=constB88 ) ) | ( ( X0_13=constB89 ) ) | ( ( X0_13=constB90 ) ) | ( ( X0_13=constB91 ) ) | ( ( X0_13=constB92 ) ) | ( ( X0_13=constB93 ) ) | ( ( X0_13=constB94 ) ) | ( ( X0_13=constB95 ) ) | ( ( X0_13=constB96 ) ) | ( ( X0_13=constB97 ) ) | ( ( X0_13=constB98 ) ) | ( ( X0_13=constB99 ) ) | ( ( X0_13=constB100 ) ) | ( ( X0_13=constB101 ) ) | ( ( X0_13=constB102 ) ) | ( ( X0_13=constB103 ) ) | ( ( X0_13=constB104 ) ) | ( ( X0_13=constB105 ) ) | ( ( X0_13=constB106 ) ) | ( ( X0_13=constB107 ) ) | ( ( X0_13=constB108 ) ) | ( ( X0_13=constB109 ) ) | ( ( X0_13=constB110 ) ) | ( ( X0_13=constB111 ) ) | ( ( X0_13=constB112 ) ) | ( ( X0_13=constB113 ) ) | ( ( X0_13=constB114 ) ) | ( ( X0_13=constB115 ) ) | ( ( X0_13=constB116 ) ) | ( ( X0_13=constB117 ) ) | ( ( X0_13=constB118 ) ) | ( ( X0_13=constB119 ) ) | ( ( X0_13=constB120 ) ) | ( ( X0_13=constB121 ) ) | ( ( X0_13=constB122 ) ) | ( ( X0_13=constB123 ) ) | ( ( X0_13=constB124 ) ) | ( ( X0_13=constB125 ) ) | ( ( X0_13=constB126 ) ) | ( ( X0_13=constB127 ) ) | ( ( X0_13=constB128 ) ) | ( ( X0_13=constB129 ) ) | ( ( X0_13=constB130 ) ) | ( ( X0_13=constB131 ) ) | ( ( X0_13=constB132 ) ) | ( ( X0_13=constB133 ) ) | ( ( X0_13=constB134 ) ) | ( ( X0_13=constB135 ) ) | ( ( X0_13=constB136 ) ) | ( ( X0_13=constB137 ) ) | ( ( X0_13=constB138 ) ) | ( ( X0_13=constB139 ) ) | ( ( X0_13=constB140 ) ) | ( ( X0_13=constB141 ) ) | ( ( X0_13=constB142 ) ) | ( ( X0_13=constB143 ) ) | ( ( X0_13=constB144 ) ) | ( ( X0_13=constB145 ) ) | ( ( X0_13=constB146 ) ) | ( ( X0_13=constB147 ) ) | ( ( X0_13=constB148 ) ) | ( ( X0_13=constB149 ) ) | ( ( X0_13=constB150 ) ) | ( ( X0_13=constB151 ) ) | ( ( X0_13=constB152 ) ) | ( ( X0_13=constB153 ) ) | ( ( X0_13=constB154 ) ) | ( ( X0_13=constB155 ) ) | ( ( X0_13=constB156 ) ) | ( ( X0_13=constB157 ) ) | ( ( X0_13=constB158 ) ) | ( ( X0_13=constB159 ) ) | ( ( X0_13=constB160 ) ) | ( ( X0_13=constB161 ) ) | ( ( X0_13=constB162 ) ) | ( ( X0_13=constB163 ) ) | ( ( X0_13=constB164 ) ) | ( ( X0_13=constB165 ) ) | ( ( X0_13=constB166 ) ) | ( ( X0_13=constB167 ) ) | ( ( X0_13=constB168 ) ) | ( ( X0_13=constB169 ) ) | ( ( X0_13=constB170 ) ) | ( ( X0_13=constB171 ) ) | ( ( X0_13=constB172 ) ) | ( ( X0_13=constB173 ) ) | ( ( X0_13=constB174 ) ) | ( ( X0_13=constB175 ) ) | ( ( X0_13=constB176 ) ) | ( ( X0_13=constB177 ) ) | ( ( X0_13=constB178 ) ) | ( ( X0_13=constB179 ) ) | ( ( X0_13=constB180 ) ) | ( ( X0_13=constB181 ) ) | ( ( X0_13=constB182 ) ) | ( ( X0_13=constB183 ) ) | ( ( X0_13=constB184 ) ) | ( ( X0_13=constB185 ) ) | ( ( X0_13=constB186 ) ) | ( ( X0_13=constB187 ) ) | ( ( X0_13=constB188 ) ) | ( ( X0_13=constB189 ) ) | ( ( X0_13=constB190 ) ) | ( ( X0_13=constB191 ) ) | ( ( X0_13=constB192 ) ) | ( ( X0_13=constB193 ) ) | ( ( X0_13=constB194 ) ) | ( ( X0_13=constB195 ) ) | ( ( X0_13=constB196 ) ) | ( ( X0_13=constB197 ) ) | ( ( X0_13=constB198 ) ) | ( ( X0_13=constB199 ) ) | ( ( X0_13=constB200 ) ) ) ) ) ). %------ Negative definition of v36 fof(lit_def,axiom, (! [X0_13] : ( ~(v36(X0_13)) <=> ( ( ( X0_13=sK0_VarCurr ) ) | ( ( X0_13=constB2 ) ) | ( ( X0_13=constB3 ) ) | ( ( X0_13=constB4 ) ) | ( ( X0_13=constB5 ) ) | ( ( X0_13=constB6 ) ) | ( ( X0_13=constB7 ) ) | ( ( X0_13=constB8 ) ) | ( ( X0_13=constB9 ) ) | ( ( X0_13=constB10 ) ) | ( ( X0_13=constB11 ) ) | ( ( X0_13=constB12 ) ) | ( ( X0_13=constB13 ) ) | ( ( X0_13=constB14 ) ) | ( ( X0_13=constB15 ) ) | ( ( X0_13=constB16 ) ) | ( ( X0_13=constB17 ) ) | ( ( X0_13=constB18 ) ) | ( ( X0_13=constB19 ) ) | ( ( X0_13=constB20 ) ) | ( ( X0_13=constB21 ) ) | ( ( X0_13=constB22 ) ) | ( ( X0_13=constB23 ) ) | ( ( X0_13=constB24 ) ) | ( ( X0_13=constB25 ) ) | ( ( X0_13=constB26 ) ) | ( ( X0_13=constB27 ) ) | ( ( X0_13=constB28 ) ) | ( ( X0_13=constB29 ) ) | ( ( X0_13=constB30 ) ) | ( ( X0_13=constB31 ) ) | ( ( X0_13=constB32 ) ) | ( ( X0_13=constB33 ) ) | ( ( X0_13=constB34 ) ) | ( ( X0_13=constB35 ) ) | ( ( X0_13=constB36 ) ) | ( ( X0_13=constB37 ) ) | ( ( X0_13=constB38 ) ) | ( ( X0_13=constB39 ) ) | ( ( X0_13=constB40 ) ) | ( ( X0_13=constB41 ) ) | ( ( X0_13=constB42 ) ) | ( ( X0_13=constB43 ) ) | ( ( X0_13=constB44 ) ) | ( ( X0_13=constB45 ) ) | ( ( X0_13=constB46 ) ) | ( ( X0_13=constB47 ) ) | ( ( X0_13=constB48 ) ) | ( ( X0_13=constB49 ) ) | ( ( X0_13=constB50 ) ) | ( ( X0_13=constB51 ) ) | ( ( X0_13=constB52 ) ) | ( ( X0_13=constB53 ) ) | ( ( X0_13=constB54 ) ) | ( ( X0_13=constB55 ) ) | ( ( X0_13=constB56 ) ) | ( ( X0_13=constB57 ) ) | ( ( X0_13=constB58 ) ) | ( ( X0_13=constB59 ) ) | ( ( X0_13=constB60 ) ) | ( ( X0_13=constB61 ) ) | ( ( X0_13=constB62 ) ) | ( ( X0_13=constB63 ) ) | ( ( X0_13=constB64 ) ) | ( ( X0_13=constB65 ) ) | ( ( X0_13=constB66 ) ) | ( ( X0_13=constB67 ) ) | ( ( X0_13=constB68 ) ) | ( ( X0_13=constB69 ) ) | ( ( X0_13=constB70 ) ) | ( ( X0_13=constB71 ) ) | ( ( X0_13=constB72 ) ) | ( ( X0_13=constB73 ) ) | ( ( X0_13=constB74 ) ) | ( ( X0_13=constB75 ) ) | ( ( X0_13=constB76 ) ) | ( ( X0_13=constB77 ) ) | ( ( X0_13=constB78 ) ) | ( ( X0_13=constB79 ) ) | ( ( X0_13=constB80 ) ) | ( ( X0_13=constB81 ) ) | ( ( X0_13=constB82 ) ) | ( ( X0_13=constB83 ) ) | ( ( X0_13=constB84 ) ) | ( ( X0_13=constB85 ) ) | ( ( X0_13=constB86 ) ) | ( ( X0_13=constB87 ) ) | ( ( X0_13=constB88 ) ) | ( ( X0_13=constB89 ) ) | ( ( X0_13=constB90 ) ) | ( ( X0_13=constB91 ) ) | ( ( X0_13=constB92 ) ) | ( ( X0_13=constB93 ) ) | ( ( X0_13=constB94 ) ) | ( ( X0_13=constB95 ) ) | ( ( X0_13=constB96 ) ) | ( ( X0_13=constB97 ) ) | ( ( X0_13=constB98 ) ) | ( ( X0_13=constB99 ) ) | ( ( X0_13=constB100 ) ) | ( ( X0_13=constB101 ) ) | ( ( X0_13=constB102 ) ) | ( ( X0_13=constB103 ) ) | ( ( X0_13=constB104 ) ) | ( ( X0_13=constB105 ) ) | ( ( X0_13=constB106 ) ) | ( ( X0_13=constB107 ) ) | ( ( X0_13=constB108 ) ) | ( ( X0_13=constB109 ) ) | ( ( X0_13=constB110 ) ) | ( ( X0_13=constB111 ) ) | ( ( X0_13=constB112 ) ) | ( ( X0_13=constB113 ) ) | ( ( X0_13=constB114 ) ) | ( ( X0_13=constB115 ) ) | ( ( X0_13=constB116 ) ) | ( ( X0_13=constB117 ) ) | ( ( X0_13=constB118 ) ) | ( ( X0_13=constB119 ) ) | ( ( X0_13=constB120 ) ) | ( ( X0_13=constB121 ) ) | ( ( X0_13=constB122 ) ) | ( ( X0_13=constB123 ) ) | ( ( X0_13=constB124 ) ) | ( ( X0_13=constB125 ) ) | ( ( X0_13=constB126 ) ) | ( ( X0_13=constB127 ) ) | ( ( X0_13=constB128 ) ) | ( ( X0_13=constB129 ) ) | ( ( X0_13=constB130 ) ) | ( ( X0_13=constB131 ) ) | ( ( X0_13=constB132 ) ) | ( ( X0_13=constB133 ) ) | ( ( X0_13=constB134 ) ) | ( ( X0_13=constB135 ) ) | ( ( X0_13=constB136 ) ) | ( ( X0_13=constB137 ) ) | ( ( X0_13=constB138 ) ) | ( ( X0_13=constB139 ) ) | ( ( X0_13=constB140 ) ) | ( ( X0_13=constB141 ) ) | ( ( X0_13=constB142 ) ) | ( ( X0_13=constB143 ) ) | ( ( X0_13=constB144 ) ) | ( ( X0_13=constB145 ) ) | ( ( X0_13=constB146 ) ) | ( ( X0_13=constB147 ) ) | ( ( X0_13=constB148 ) ) | ( ( X0_13=constB149 ) ) | ( ( X0_13=constB150 ) ) | ( ( X0_13=constB151 ) ) | ( ( X0_13=constB152 ) ) | ( ( X0_13=constB153 ) ) | ( ( X0_13=constB154 ) ) | ( ( X0_13=constB155 ) ) | ( ( X0_13=constB156 ) ) | ( ( X0_13=constB157 ) ) | ( ( X0_13=constB158 ) ) | ( ( X0_13=constB159 ) ) | ( ( X0_13=constB160 ) ) | ( ( X0_13=constB161 ) ) | ( ( X0_13=constB162 ) ) | ( ( X0_13=constB163 ) ) | ( ( X0_13=constB164 ) ) | ( ( X0_13=constB165 ) ) | ( ( X0_13=constB166 ) ) | ( ( X0_13=constB167 ) ) | ( ( X0_13=constB168 ) ) | ( ( X0_13=constB169 ) ) | ( ( X0_13=constB170 ) ) | ( ( X0_13=constB171 ) ) | ( ( X0_13=constB172 ) ) | ( ( X0_13=constB173 ) ) | ( ( X0_13=constB174 ) ) | ( ( X0_13=constB175 ) ) | ( ( X0_13=constB176 ) ) | ( ( X0_13=constB177 ) ) | ( ( X0_13=constB178 ) ) | ( ( X0_13=constB179 ) ) | ( ( X0_13=constB180 ) ) | ( ( X0_13=constB181 ) ) | ( ( X0_13=constB182 ) ) | ( ( X0_13=constB183 ) ) | ( ( X0_13=constB184 ) ) | ( ( X0_13=constB185 ) ) | ( ( X0_13=constB186 ) ) | ( ( X0_13=constB187 ) ) | ( ( X0_13=constB188 ) ) | ( ( X0_13=constB189 ) ) | ( ( X0_13=constB190 ) ) | ( ( X0_13=constB191 ) ) | ( ( X0_13=constB192 ) ) | ( ( X0_13=constB193 ) ) | ( ( X0_13=constB194 ) ) | ( ( X0_13=constB195 ) ) | ( ( X0_13=constB196 ) ) | ( ( X0_13=constB197 ) ) | ( ( X0_13=constB198 ) ) | ( ( X0_13=constB199 ) ) | ( ( X0_13=constB200 ) ) ) ) ) ). %------ Positive definition of v44 fof(lit_def,axiom, (! [X0_13] : ( v44(X0_13) <=>$false
)
)
).

%------ Positive definition of v46
fof(lit_def,axiom,
(! [X0_13] :
( v46(X0_13) <=>
$false ) ) ). %------ Positive definition of v64 fof(lit_def,axiom, (! [X0_13] : ( v64(X0_13) <=>$true
)
)
).

%------ Positive definition of v60
fof(lit_def,axiom,
(! [X0_13] :
( v60(X0_13) <=>
$false ) ) ). %------ Positive definition of v90 fof(lit_def,axiom, (! [X0_13,X0_15] : ( v90(X0_13,X0_15) <=> ( ( ( X0_13=sK0_VarCurr & X0_15=bitIndex1 ) ) | ( ( X0_13=sK0_VarCurr & X0_15=bitIndex2 ) ) | ( ( X0_13=constB2 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB3 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB4 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB4 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB5 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB5 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB6 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB7 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB8 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB9 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB10 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB10 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB11 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB11 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB12 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB13 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB14 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB14 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB15 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB15 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB16 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB17 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB18 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB19 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB20 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB20 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB21 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB21 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB22 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB23 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB24 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB24 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB25 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB25 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB26 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB27 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB28 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB29 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB30 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB30 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB31 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB31 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB32 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB33 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB34 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB34 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB35 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB35 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB36 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB37 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB38 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB39 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB40 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB40 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB41 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB41 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB42 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB43 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB44 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB44 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB45 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB45 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB46 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB47 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB48 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB49 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB50 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB50 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB51 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB51 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB52 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB53 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB54 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB54 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB55 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB55 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB56 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB57 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB58 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB59 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB60 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB60 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB61 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB61 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB62 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB63 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB64 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB64 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB65 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB65 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB66 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB67 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB68 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB69 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB70 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB70 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB71 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB71 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB72 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB73 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB74 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB74 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB75 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB75 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB76 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB77 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB78 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB79 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB80 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB80 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB81 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB81 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB82 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB83 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB84 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB84 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB85 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB85 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB86 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB87 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB88 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB89 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB90 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB90 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB91 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB91 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB92 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB93 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB94 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB94 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB95 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB95 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB96 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB97 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB98 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB99 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB100 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB100 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB101 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB101 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB102 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB103 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB104 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB104 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB105 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB105 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB106 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB107 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB108 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB109 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB110 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB110 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB111 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB111 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB112 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB113 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB114 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB114 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB115 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB115 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB116 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB117 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB118 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB119 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB120 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB120 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB121 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB121 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB122 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB123 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB124 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB124 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB125 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB125 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB126 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB127 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB128 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB129 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB130 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB130 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB131 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB131 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB132 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB133 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB134 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB134 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB135 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB135 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB136 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB137 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB138 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB139 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB140 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB140 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB141 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB141 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB142 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB143 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB144 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB144 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB145 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB145 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB146 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB147 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB148 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB149 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB150 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB150 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB151 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB151 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB152 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB153 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB154 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB154 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB155 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB155 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB156 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB157 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB158 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB159 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB160 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB160 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB161 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB161 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB162 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB163 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB164 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB164 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB165 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB165 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB166 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB167 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB168 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB169 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB170 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB170 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB171 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB171 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB172 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB173 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB174 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB174 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB175 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB175 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB176 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB177 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB178 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB179 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB180 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB180 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB181 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB181 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB182 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB183 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB184 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB184 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB185 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB185 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB186 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB187 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB188 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB189 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB190 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB190 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB191 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB191 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB192 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB193 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB194 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB194 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB195 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB195 & X0_15=bitIndex2 ) ) | ( ( X0_13=constB196 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB197 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB198 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB199 & X0_15=bitIndex1 ) ) | ( ( X0_13=constB200 & X0_15=bitIndex0 ) ) | ( ( X0_13=constB200 & X0_15=bitIndex1 ) ) ) ) ) ). %------ Negative definition of v104 fof(lit_def,axiom, (! [X0_13] : ( ~(v104(X0_13)) <=> ( ( ( X0_13=constB2 ) ) | ( ( X0_13=constB4 ) ) | ( ( X0_13=constB6 ) ) | ( ( X0_13=constB8 ) ) | ( ( X0_13=constB10 ) ) | ( ( X0_13=constB12 ) ) | ( ( X0_13=constB14 ) ) | ( ( X0_13=constB16 ) ) | ( ( X0_13=constB18 ) ) | ( ( X0_13=constB20 ) ) | ( ( X0_13=constB22 ) ) | ( ( X0_13=constB24 ) ) | ( ( X0_13=constB26 ) ) | ( ( X0_13=constB28 ) ) | ( ( X0_13=constB30 ) ) | ( ( X0_13=constB32 ) ) | ( ( X0_13=constB34 ) ) | ( ( X0_13=constB36 ) ) | ( ( X0_13=constB38 ) ) | ( ( X0_13=constB40 ) ) | ( ( X0_13=constB42 ) ) | ( ( X0_13=constB44 ) ) | ( ( X0_13=constB46 ) ) | ( ( X0_13=constB48 ) ) | ( ( X0_13=constB50 ) ) | ( ( X0_13=constB52 ) ) | ( ( X0_13=constB54 ) ) | ( ( X0_13=constB56 ) ) | ( ( X0_13=constB58 ) ) | ( ( X0_13=constB60 ) ) | ( ( X0_13=constB62 ) ) | ( ( X0_13=constB64 ) ) | ( ( X0_13=constB66 ) ) | ( ( X0_13=constB68 ) ) | ( ( X0_13=constB70 ) ) | ( ( X0_13=constB72 ) ) | ( ( X0_13=constB74 ) ) | ( ( X0_13=constB76 ) ) | ( ( X0_13=constB78 ) ) | ( ( X0_13=constB80 ) ) | ( ( X0_13=constB82 ) ) | ( ( X0_13=constB84 ) ) | ( ( X0_13=constB86 ) ) | ( ( X0_13=constB88 ) ) | ( ( X0_13=constB90 ) ) | ( ( X0_13=constB92 ) ) | ( ( X0_13=constB94 ) ) | ( ( X0_13=constB96 ) ) | ( ( X0_13=constB98 ) ) | ( ( X0_13=constB100 ) ) | ( ( X0_13=constB102 ) ) | ( ( X0_13=constB104 ) ) | ( ( X0_13=constB106 ) ) | ( ( X0_13=constB108 ) ) | ( ( X0_13=constB110 ) ) | ( ( X0_13=constB112 ) ) | ( ( X0_13=constB114 ) ) | ( ( X0_13=constB116 ) ) | ( ( X0_13=constB118 ) ) | ( ( X0_13=constB120 ) ) | ( ( X0_13=constB122 ) ) | ( ( X0_13=constB124 ) ) | ( ( X0_13=constB126 ) ) | ( ( X0_13=constB128 ) ) | ( ( X0_13=constB130 ) ) | ( ( X0_13=constB132 ) ) | ( ( X0_13=constB134 ) ) | ( ( X0_13=constB136 ) ) | ( ( X0_13=constB138 ) ) | ( ( X0_13=constB140 ) ) | ( ( X0_13=constB142 ) ) | ( ( X0_13=constB144 ) ) | ( ( X0_13=constB146 ) ) | ( ( X0_13=constB148 ) ) | ( ( X0_13=constB150 ) ) | ( ( X0_13=constB152 ) ) | ( ( X0_13=constB154 ) ) | ( ( X0_13=constB156 ) ) | ( ( X0_13=constB158 ) ) | ( ( X0_13=constB160 ) ) | ( ( X0_13=constB162 ) ) | ( ( X0_13=constB164 ) ) | ( ( X0_13=constB166 ) ) | ( ( X0_13=constB168 ) ) | ( ( X0_13=constB170 ) ) | ( ( X0_13=constB172 ) ) | ( ( X0_13=constB174 ) ) | ( ( X0_13=constB176 ) ) | ( ( X0_13=constB178 ) ) | ( ( X0_13=constB180 ) ) | ( ( X0_13=constB182 ) ) | ( ( X0_13=constB184 ) ) | ( ( X0_13=constB186 ) ) | ( ( X0_13=constB188 ) ) | ( ( X0_13=constB190 ) ) | ( ( X0_13=constB192 ) ) | ( ( X0_13=constB194 ) ) | ( ( X0_13=constB196 ) ) | ( ( X0_13=constB198 ) ) | ( ( X0_13=constB200 ) ) ) ) ) ). %------ Negative definition of v119 fof(lit_def,axiom, (! [X0_13] : ( ~(v119(X0_13)) <=> ( ( ( X0_13=sK0_VarCurr ) ) | ( ( X0_13=constB2 ) ) | ( ( X0_13=constB3 ) ) | ( ( X0_13=constB4 ) ) | ( ( X0_13=constB5 ) ) | ( ( X0_13=constB6 ) ) | ( ( X0_13=constB7 ) ) | ( ( X0_13=constB8 ) ) | ( ( X0_13=constB9 ) ) | ( ( X0_13=constB10 ) ) | ( ( X0_13=constB11 ) ) | ( ( X0_13=constB12 ) ) | ( ( X0_13=constB13 ) ) | ( ( X0_13=constB14 ) ) | ( ( X0_13=constB15 ) ) | ( ( X0_13=constB16 ) ) | ( ( X0_13=constB17 ) ) | ( ( X0_13=constB18 ) ) | ( ( X0_13=constB19 ) ) | ( ( X0_13=constB20 ) ) | ( ( X0_13=constB21 ) ) | ( ( X0_13=constB22 ) ) | ( ( X0_13=constB23 ) ) | ( ( X0_13=constB24 ) ) | ( ( X0_13=constB25 ) ) | ( ( X0_13=constB26 ) ) | ( ( X0_13=constB27 ) ) | ( ( X0_13=constB28 ) ) | ( ( X0_13=constB29 ) ) | ( ( X0_13=constB30 ) ) | ( ( X0_13=constB31 ) ) | ( ( X0_13=constB32 ) ) | ( ( X0_13=constB33 ) ) | ( ( X0_13=constB34 ) ) | ( ( X0_13=constB35 ) ) | ( ( X0_13=constB36 ) ) | ( ( X0_13=constB37 ) ) | ( ( X0_13=constB38 ) ) | ( ( X0_13=constB39 ) ) | ( ( X0_13=constB40 ) ) | ( ( X0_13=constB41 ) ) | ( ( X0_13=constB42 ) ) | ( ( X0_13=constB43 ) ) | ( ( X0_13=constB44 ) ) | ( ( X0_13=constB45 ) ) | ( ( X0_13=constB46 ) ) | ( ( X0_13=constB47 ) ) | ( ( X0_13=constB48 ) ) | ( ( X0_13=constB49 ) ) | ( ( X0_13=constB50 ) ) | ( ( X0_13=constB51 ) ) | ( ( X0_13=constB52 ) ) | ( ( X0_13=constB53 ) ) | ( ( X0_13=constB54 ) ) | ( ( X0_13=constB55 ) ) | ( ( X0_13=constB56 ) ) | ( ( X0_13=constB57 ) ) | ( ( X0_13=constB58 ) ) | ( ( X0_13=constB59 ) ) | ( ( X0_13=constB60 ) ) | ( ( X0_13=constB61 ) ) | ( ( X0_13=constB62 ) ) | ( ( X0_13=constB63 ) ) | ( ( X0_13=constB64 ) ) | ( ( X0_13=constB65 ) ) | ( ( X0_13=constB66 ) ) | ( ( X0_13=constB67 ) ) | ( ( X0_13=constB68 ) ) | ( ( X0_13=constB69 ) ) | ( ( X0_13=constB70 ) ) | ( ( X0_13=constB71 ) ) | ( ( X0_13=constB72 ) ) | ( ( X0_13=constB73 ) ) | ( ( X0_13=constB74 ) ) | ( ( X0_13=constB75 ) ) | ( ( X0_13=constB76 ) ) | ( ( X0_13=constB77 ) ) | ( ( X0_13=constB78 ) ) | ( ( X0_13=constB79 ) ) | ( ( X0_13=constB80 ) ) | ( ( X0_13=constB81 ) ) | ( ( X0_13=constB82 ) ) | ( ( X0_13=constB83 ) ) | ( ( X0_13=constB84 ) ) | ( ( X0_13=constB85 ) ) | ( ( X0_13=constB86 ) ) | ( ( X0_13=constB87 ) ) | ( ( X0_13=constB88 ) ) | ( ( X0_13=constB89 ) ) | ( ( X0_13=constB90 ) ) | ( ( X0_13=constB91 ) ) | ( ( X0_13=constB92 ) ) | ( ( X0_13=constB93 ) ) | ( ( X0_13=constB94 ) ) | ( ( X0_13=constB95 ) ) | ( ( X0_13=constB96 ) ) | ( ( X0_13=constB97 ) ) | ( ( X0_13=constB98 ) ) | ( ( X0_13=constB99 ) ) | ( ( X0_13=constB100 ) ) | ( ( X0_13=constB101 ) ) | ( ( X0_13=constB102 ) ) | ( ( X0_13=constB103 ) ) | ( ( X0_13=constB104 ) ) | ( ( X0_13=constB105 ) ) | ( ( X0_13=constB106 ) ) | ( ( X0_13=constB107 ) ) | ( ( X0_13=constB108 ) ) | ( ( X0_13=constB109 ) ) | ( ( X0_13=constB110 ) ) | ( ( X0_13=constB111 ) ) | ( ( X0_13=constB112 ) ) | ( ( X0_13=constB113 ) ) | ( ( X0_13=constB114 ) ) | ( ( X0_13=constB115 ) ) | ( ( X0_13=constB116 ) ) | ( ( X0_13=constB117 ) ) | ( ( X0_13=constB118 ) ) | ( ( X0_13=constB119 ) ) | ( ( X0_13=constB120 ) ) | ( ( X0_13=constB121 ) ) | ( ( X0_13=constB122 ) ) | ( ( X0_13=constB123 ) ) | ( ( X0_13=constB124 ) ) | ( ( X0_13=constB125 ) ) | ( ( X0_13=constB126 ) ) | ( ( X0_13=constB127 ) ) | ( ( X0_13=constB128 ) ) | ( ( X0_13=constB129 ) ) | ( ( X0_13=constB130 ) ) | ( ( X0_13=constB131 ) ) | ( ( X0_13=constB132 ) ) | ( ( X0_13=constB133 ) ) | ( ( X0_13=constB134 ) ) | ( ( X0_13=constB135 ) ) | ( ( X0_13=constB136 ) ) | ( ( X0_13=constB137 ) ) | ( ( X0_13=constB138 ) ) | ( ( X0_13=constB139 ) ) | ( ( X0_13=constB140 ) ) | ( ( X0_13=constB141 ) ) | ( ( X0_13=constB142 ) ) | ( ( X0_13=constB143 ) ) | ( ( X0_13=constB144 ) ) | ( ( X0_13=constB145 ) ) | ( ( X0_13=constB146 ) ) | ( ( X0_13=constB147 ) ) | ( ( X0_13=constB148 ) ) | ( ( X0_13=constB149 ) ) | ( ( X0_13=constB150 ) ) | ( ( X0_13=constB151 ) ) | ( ( X0_13=constB152 ) ) | ( ( X0_13=constB153 ) ) | ( ( X0_13=constB154 ) ) | ( ( X0_13=constB155 ) ) | ( ( X0_13=constB156 ) ) | ( ( X0_13=constB157 ) ) | ( ( X0_13=constB158 ) ) | ( ( X0_13=constB159 ) ) | ( ( X0_13=constB160 ) ) | ( ( X0_13=constB161 ) ) | ( ( X0_13=constB162 ) ) | ( ( X0_13=constB163 ) ) | ( ( X0_13=constB164 ) ) | ( ( X0_13=constB165 ) ) | ( ( X0_13=constB166 ) ) | ( ( X0_13=constB167 ) ) | ( ( X0_13=constB168 ) ) | ( ( X0_13=constB169 ) ) | ( ( X0_13=constB170 ) ) | ( ( X0_13=constB171 ) ) | ( ( X0_13=constB172 ) ) | ( ( X0_13=constB173 ) ) | ( ( X0_13=constB174 ) ) | ( ( X0_13=constB175 ) ) | ( ( X0_13=constB176 ) ) | ( ( X0_13=constB177 ) ) | ( ( X0_13=constB178 ) ) | ( ( X0_13=constB179 ) ) | ( ( X0_13=constB180 ) ) | ( ( X0_13=constB181 ) ) | ( ( X0_13=constB182 ) ) | ( ( X0_13=constB183 ) ) | ( ( X0_13=constB184 ) ) | ( ( X0_13=constB185 ) ) | ( ( X0_13=constB186 ) ) | ( ( X0_13=constB187 ) ) | ( ( X0_13=constB188 ) ) | ( ( X0_13=constB189 ) ) | ( ( X0_13=constB190 ) ) | ( ( X0_13=constB191 ) ) | ( ( X0_13=constB192 ) ) | ( ( X0_13=constB193 ) ) | ( ( X0_13=constB194 ) ) | ( ( X0_13=constB195 ) ) | ( ( X0_13=constB196 ) ) | ( ( X0_13=constB197 ) ) | ( ( X0_13=constB198 ) ) | ( ( X0_13=constB199 ) ) | ( ( X0_13=constB200 ) ) ) ) ) ). %------ Positive definition of v120 fof(lit_def,axiom, (! [X0_13] : ( v120(X0_13) <=> ( ( ( X0_13=constB6 ) ) | ( ( X0_13=constB7 ) ) | ( ( X0_13=constB16 ) ) | ( ( X0_13=constB17 ) ) | ( ( X0_13=constB26 ) ) | ( ( X0_13=constB27 ) ) | ( ( X0_13=constB36 ) ) | ( ( X0_13=constB37 ) ) | ( ( X0_13=constB46 ) ) | ( ( X0_13=constB47 ) ) | ( ( X0_13=constB56 ) ) | ( ( X0_13=constB57 ) ) | ( ( X0_13=constB66 ) ) | ( ( X0_13=constB67 ) ) | ( ( X0_13=constB76 ) ) | ( ( X0_13=constB77 ) ) | ( ( X0_13=constB86 ) ) | ( ( X0_13=constB87 ) ) | ( ( X0_13=constB96 ) ) | ( ( X0_13=constB97 ) ) | ( ( X0_13=constB106 ) ) | ( ( X0_13=constB107 ) ) | ( ( X0_13=constB116 ) ) | ( ( X0_13=constB117 ) ) | ( ( X0_13=constB126 ) ) | ( ( X0_13=constB127 ) ) | ( ( X0_13=constB136 ) ) | ( ( X0_13=constB137 ) ) | ( ( X0_13=constB146 ) ) | ( ( X0_13=constB147 ) ) | ( ( X0_13=constB156 ) ) | ( ( X0_13=constB157 ) ) | ( ( X0_13=constB166 ) ) | ( ( X0_13=constB167 ) ) | ( ( X0_13=constB176 ) ) | ( ( X0_13=constB177 ) ) | ( ( X0_13=constB186 ) ) | ( ( X0_13=constB187 ) ) | ( ( X0_13=constB196 ) ) | ( ( X0_13=constB197 ) ) ) ) ) ). %------ Positive definition of v121 fof(lit_def,axiom, (! [X0_13] : ( v121(X0_13) <=> ( ( ( X0_13=constB8 ) ) | ( ( X0_13=constB9 ) ) | ( ( X0_13=constB18 ) ) | ( ( X0_13=constB19 ) ) | ( ( X0_13=constB28 ) ) | ( ( X0_13=constB29 ) ) | ( ( X0_13=constB38 ) ) | ( ( X0_13=constB39 ) ) | ( ( X0_13=constB48 ) ) | ( ( X0_13=constB49 ) ) | ( ( X0_13=constB58 ) ) | ( ( X0_13=constB59 ) ) | ( ( X0_13=constB68 ) ) | ( ( X0_13=constB69 ) ) | ( ( X0_13=constB78 ) ) | ( ( X0_13=constB79 ) ) | ( ( X0_13=constB88 ) ) | ( ( X0_13=constB89 ) ) | ( ( X0_13=constB98 ) ) | ( ( X0_13=constB99 ) ) | ( ( X0_13=constB108 ) ) | ( ( X0_13=constB109 ) ) | ( ( X0_13=constB118 ) ) | ( ( X0_13=constB119 ) ) | ( ( X0_13=constB128 ) ) | ( ( X0_13=constB129 ) ) | ( ( X0_13=constB138 ) ) | ( ( X0_13=constB139 ) ) | ( ( X0_13=constB148 ) ) | ( ( X0_13=constB149 ) ) | ( ( X0_13=constB158 ) ) | ( ( X0_13=constB159 ) ) | ( ( X0_13=constB168 ) ) | ( ( X0_13=constB169 ) ) | ( ( X0_13=constB178 ) ) | ( ( X0_13=constB179 ) ) | ( ( X0_13=constB188 ) ) | ( ( X0_13=constB189 ) ) | ( ( X0_13=constB198 ) ) | ( ( X0_13=constB199 ) ) ) ) ) ). %------ Positive definition of v122 fof(lit_def,axiom, (! [X0_13] : ( v122(X0_13) <=> ( ( ( X0_13=constB10 ) ) | ( ( X0_13=constB11 ) ) | ( ( X0_13=constB20 ) ) | ( ( X0_13=constB21 ) ) | ( ( X0_13=constB30 ) ) | ( ( X0_13=constB31 ) ) | ( ( X0_13=constB40 ) ) | ( ( X0_13=constB41 ) ) | ( ( X0_13=constB50 ) ) | ( ( X0_13=constB51 ) ) | ( ( X0_13=constB60 ) ) | ( ( X0_13=constB61 ) ) | ( ( X0_13=constB70 ) ) | ( ( X0_13=constB71 ) ) | ( ( X0_13=constB80 ) ) | ( ( X0_13=constB81 ) ) | ( ( X0_13=constB90 ) ) | ( ( X0_13=constB91 ) ) | ( ( X0_13=constB100 ) ) | ( ( X0_13=constB101 ) ) | ( ( X0_13=constB110 ) ) | ( ( X0_13=constB111 ) ) | ( ( X0_13=constB120 ) ) | ( ( X0_13=constB121 ) ) | ( ( X0_13=constB130 ) ) | ( ( X0_13=constB131 ) ) | ( ( X0_13=constB140 ) ) | ( ( X0_13=constB141 ) ) | ( ( X0_13=constB150 ) ) | ( ( X0_13=constB151 ) ) | ( ( X0_13=constB160 ) ) | ( ( X0_13=constB161 ) ) | ( ( X0_13=constB170 ) ) | ( ( X0_13=constB171 ) ) | ( ( X0_13=constB180 ) ) | ( ( X0_13=constB181 ) ) | ( ( X0_13=constB190 ) ) | ( ( X0_13=constB191 ) ) | ( ( X0_13=constB200 ) ) ) ) ) ). %------ Positive definition of v123 fof(lit_def,axiom, (! [X0_13] : ( v123(X0_13) <=> ( ( ( X0_13=constB2 ) ) | ( ( X0_13=constB3 ) ) | ( ( X0_13=constB12 ) ) | ( ( X0_13=constB13 ) ) | ( ( X0_13=constB22 ) ) | ( ( X0_13=constB23 ) ) | ( ( X0_13=constB32 ) ) | ( ( X0_13=constB33 ) ) | ( ( X0_13=constB42 ) ) | ( ( X0_13=constB43 ) ) | ( ( X0_13=constB52 ) ) | ( ( X0_13=constB53 ) ) | ( ( X0_13=constB62 ) ) | ( ( X0_13=constB63 ) ) | ( ( X0_13=constB72 ) ) | ( ( X0_13=constB73 ) ) | ( ( X0_13=constB82 ) ) | ( ( X0_13=constB83 ) ) | ( ( X0_13=constB92 ) ) | ( ( X0_13=constB93 ) ) | ( ( X0_13=constB102 ) ) | ( ( X0_13=constB103 ) ) | ( ( X0_13=constB112 ) ) | ( ( X0_13=constB113 ) ) | ( ( X0_13=constB122 ) ) | ( ( X0_13=constB123 ) ) | ( ( X0_13=constB132 ) ) | ( ( X0_13=constB133 ) ) | ( ( X0_13=constB142 ) ) | ( ( X0_13=constB143 ) ) | ( ( X0_13=constB152 ) ) | ( ( X0_13=constB153 ) ) | ( ( X0_13=constB162 ) ) | ( ( X0_13=constB163 ) ) | ( ( X0_13=constB172 ) ) | ( ( X0_13=constB173 ) ) | ( ( X0_13=constB182 ) ) | ( ( X0_13=constB183 ) ) | ( ( X0_13=constB192 ) ) | ( ( X0_13=constB193 ) ) ) ) ) ). %------ Negative definition of v115 fof(lit_def,axiom, (! [X0_13] : ( ~(v115(X0_13)) <=> ( ( ( X0_13=sK0_VarCurr ) ) | ( ( X0_13=constB4 ) ) | ( ( X0_13=constB5 ) ) | ( ( X0_13=constB14 ) ) | ( ( X0_13=constB15 ) ) | ( ( X0_13=constB24 ) ) | ( ( X0_13=constB25 ) ) | ( ( X0_13=constB34 ) ) | ( ( X0_13=constB35 ) ) | ( ( X0_13=constB44 ) ) | ( ( X0_13=constB45 ) ) | ( ( X0_13=constB54 ) ) | ( ( X0_13=constB55 ) ) | ( ( X0_13=constB64 ) ) | ( ( X0_13=constB65 ) ) | ( ( X0_13=constB74 ) ) | ( ( X0_13=constB75 ) ) | ( ( X0_13=constB84 ) ) | ( ( X0_13=constB85 ) ) | ( ( X0_13=constB94 ) ) | ( ( X0_13=constB95 ) ) | ( ( X0_13=constB104 ) ) | ( ( X0_13=constB105 ) ) | ( ( X0_13=constB114 ) ) | ( ( X0_13=constB115 ) ) | ( ( X0_13=constB124 ) ) | ( ( X0_13=constB125 ) ) | ( ( X0_13=constB134 ) ) | ( ( X0_13=constB135 ) ) | ( ( X0_13=constB144 ) ) | ( ( X0_13=constB145 ) ) | ( ( X0_13=constB154 ) ) | ( ( X0_13=constB155 ) ) | ( ( X0_13=constB164 ) ) | ( ( X0_13=constB165 ) ) | ( ( X0_13=constB174 ) ) | ( ( X0_13=constB175 ) ) | ( ( X0_13=constB184 ) ) | ( ( X0_13=constB185 ) ) | ( ( X0_13=constB194 ) ) | ( ( X0_13=constB195 ) ) ) ) ) ). %------ Positive definition of v124 fof(lit_def,axiom, (! [X0_13] : ( v124(X0_13) <=>$false
)
)
).

%------ Negative definition of v108
fof(lit_def,axiom,
(! [X0_13] :
( ~(v108(X0_13)) <=>
$false ) ) ). %------ Negative definition of v110 fof(lit_def,axiom, (! [X0_13] : ( ~(v110(X0_13)) <=>$false
)
)
).

%------ Positive definition of v100
fof(lit_def,axiom,
(! [X0_13] :
( v100(X0_13) <=>
(
(
( X0_13=constB2 )
)

|
(
( X0_13=constB4 )
)

|
(
( X0_13=constB6 )
)

|
(
( X0_13=constB8 )
)

|
(
( X0_13=constB10 )
)

|
(
( X0_13=constB12 )
)

|
(
( X0_13=constB14 )
)

|
(
( X0_13=constB16 )
)

|
(
( X0_13=constB18 )
)

|
(
( X0_13=constB20 )
)

|
(
( X0_13=constB22 )
)

|
(
( X0_13=constB24 )
)

|
(
( X0_13=constB26 )
)

|
(
( X0_13=constB28 )
)

|
(
( X0_13=constB30 )
)

|
(
( X0_13=constB32 )
)

|
(
( X0_13=constB34 )
)

|
(
( X0_13=constB36 )
)

|
(
( X0_13=constB38 )
)

|
(
( X0_13=constB40 )
)

|
(
( X0_13=constB42 )
)

|
(
( X0_13=constB44 )
)

|
(
( X0_13=constB46 )
)

|
(
( X0_13=constB48 )
)

|
(
( X0_13=constB50 )
)

|
(
( X0_13=constB52 )
)

|
(
( X0_13=constB54 )
)

|
(
( X0_13=constB56 )
)

|
(
( X0_13=constB58 )
)

|
(
( X0_13=constB60 )
)

|
(
( X0_13=constB62 )
)

|
(
( X0_13=constB64 )
)

|
(
( X0_13=constB66 )
)

|
(
( X0_13=constB68 )
)

|
(
( X0_13=constB70 )
)

|
(
( X0_13=constB72 )
)

|
(
( X0_13=constB74 )
)

|
(
( X0_13=constB76 )
)

|
(
( X0_13=constB78 )
)

|
(
( X0_13=constB80 )
)

|
(
( X0_13=constB82 )
)

|
(
( X0_13=constB84 )
)

|
(
( X0_13=constB86 )
)

|
(
( X0_13=constB88 )
)

|
(
( X0_13=constB90 )
)

|
(
( X0_13=constB92 )
)

|
(
( X0_13=constB94 )
)

|
(
( X0_13=constB96 )
)

|
(
( X0_13=constB98 )
)

|
(
( X0_13=constB100 )
)

|
(
( X0_13=constB102 )
)

|
(
( X0_13=constB104 )
)

|
(
( X0_13=constB106 )
)

|
(
( X0_13=constB108 )
)

|
(
( X0_13=constB110 )
)

|
(
( X0_13=constB112 )
)

|
(
( X0_13=constB114 )
)

|
(
( X0_13=constB116 )
)

|
(
( X0_13=constB118 )
)

|
(
( X0_13=constB120 )
)

|
(
( X0_13=constB122 )
)

|
(
( X0_13=constB124 )
)

|
(
( X0_13=constB126 )
)

|
(
( X0_13=constB128 )
)

|
(
( X0_13=constB130 )
)

|
(
( X0_13=constB132 )
)

|
(
( X0_13=constB134 )
)

|
(
( X0_13=constB136 )
)

|
(
( X0_13=constB138 )
)

|
(
( X0_13=constB140 )
)

|
(
( X0_13=constB142 )
)

|
(
( X0_13=constB144 )
)

|
(
( X0_13=constB146 )
)

|
(
( X0_13=constB148 )
)

|
(
( X0_13=constB150 )
)

|
(
( X0_13=constB152 )
)

|
(
( X0_13=constB154 )
)

|
(
( X0_13=constB156 )
)

|
(
( X0_13=constB158 )
)

|
(
( X0_13=constB160 )
)

|
(
( X0_13=constB162 )
)

|
(
( X0_13=constB164 )
)

|
(
( X0_13=constB166 )
)

|
(
( X0_13=constB168 )
)

|
(
( X0_13=constB170 )
)

|
(
( X0_13=constB172 )
)

|
(
( X0_13=constB174 )
)

|
(
( X0_13=constB176 )
)

|
(
( X0_13=constB178 )
)

|
(
( X0_13=constB180 )
)

|
(
( X0_13=constB182 )
)

|
(
( X0_13=constB184 )
)

|
(
( X0_13=constB186 )
)

|
(
( X0_13=constB188 )
)

|
(
( X0_13=constB190 )
)

|
(
( X0_13=constB192 )
)

|
(
( X0_13=constB194 )
)

|
(
( X0_13=constB196 )
)

|
(
( X0_13=constB198 )
)

|
(
( X0_13=constB200 )
)

)
)
)
).

%------ Positive definition of v130
fof(lit_def,axiom,
(! [X0_13,X0_15] :
( v130(X0_13,X0_15) <=>
(
(
( X0_13=sK0_VarCurr & X0_15=bitIndex0 )
)

|
(
( X0_13=constB2 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB2 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB3 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB3 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB4 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB5 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB6 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB7 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB8 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB8 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB9 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB9 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB10 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB11 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB12 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB12 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB13 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB13 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB14 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB15 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB16 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB17 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB18 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB18 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB19 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB19 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB20 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB21 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB22 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB22 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB23 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB23 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB24 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB25 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB26 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB27 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB28 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB28 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB29 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB29 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB30 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB31 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB32 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB32 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB33 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB33 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB34 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB35 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB36 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB37 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB38 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB38 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB39 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB39 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB40 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB41 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB42 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB42 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB43 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB43 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB44 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB45 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB46 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB47 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB48 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB48 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB49 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB49 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB50 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB51 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB52 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB52 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB53 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB53 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB54 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB55 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB56 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB57 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB58 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB58 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB59 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB59 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB60 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB61 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB62 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB62 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB63 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB63 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB64 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB65 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB66 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB67 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB68 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB68 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB69 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB69 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB70 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB71 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB72 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB72 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB73 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB73 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB74 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB75 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB76 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB77 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB78 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB78 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB79 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB79 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB80 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB81 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB82 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB82 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB83 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB83 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB84 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB85 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB86 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB87 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB88 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB88 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB89 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB89 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB90 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB91 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB92 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB92 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB93 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB93 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB94 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB95 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB96 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB97 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB98 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB98 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB99 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB99 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB100 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB101 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB102 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB102 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB103 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB103 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB104 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB105 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB106 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB107 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB108 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB108 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB109 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB109 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB110 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB111 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB112 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB112 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB113 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB113 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB114 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB115 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB116 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB117 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB118 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB118 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB119 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB119 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB120 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB121 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB122 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB122 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB123 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB123 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB124 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB125 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB126 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB127 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB128 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB128 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB129 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB129 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB130 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB131 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB132 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB132 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB133 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB133 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB134 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB135 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB136 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB137 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB138 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB138 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB139 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB139 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB140 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB141 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB142 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB142 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB143 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB143 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB144 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB145 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB146 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB147 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB148 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB148 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB149 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB149 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB150 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB151 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB152 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB152 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB153 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB153 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB154 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB155 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB156 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB157 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB158 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB158 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB159 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB159 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB160 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB161 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB162 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB162 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB163 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB163 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB164 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB165 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB166 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB167 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB168 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB168 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB169 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB169 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB170 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB171 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB172 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB172 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB173 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB173 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB174 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB175 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB176 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB177 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB178 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB178 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB179 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB179 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB180 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB181 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB182 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB182 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB183 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB183 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB184 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB185 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB186 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB187 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB188 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB188 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB189 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB189 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB190 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB191 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB192 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB192 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB193 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB193 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB194 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB195 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB196 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB197 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB198 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB198 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB199 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB199 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB200 & X0_15=bitIndex2 )
)

|
(
( X0_15=bitIndex2 )
&
( X0_13!=sK0_VarCurr )
&
( X0_13!=constB2 )
&
( X0_13!=constB3 )
&
( X0_13!=constB4 )
&
( X0_13!=constB5 )
&
( X0_13!=constB6 )
&
( X0_13!=constB7 )
&
( X0_13!=constB8 )
&
( X0_13!=constB9 )
&
( X0_13!=constB10 )
&
( X0_13!=constB11 )
&
( X0_13!=constB12 )
&
( X0_13!=constB13 )
&
( X0_13!=constB14 )
&
( X0_13!=constB15 )
&
( X0_13!=constB16 )
&
( X0_13!=constB17 )
&
( X0_13!=constB18 )
&
( X0_13!=constB19 )
&
( X0_13!=constB20 )
&
( X0_13!=constB21 )
&
( X0_13!=constB22 )
&
( X0_13!=constB23 )
&
( X0_13!=constB24 )
&
( X0_13!=constB25 )
&
( X0_13!=constB26 )
&
( X0_13!=constB27 )
&
( X0_13!=constB28 )
&
( X0_13!=constB29 )
&
( X0_13!=constB30 )
&
( X0_13!=constB31 )
&
( X0_13!=constB32 )
&
( X0_13!=constB33 )
&
( X0_13!=constB34 )
&
( X0_13!=constB35 )
&
( X0_13!=constB36 )
&
( X0_13!=constB37 )
&
( X0_13!=constB38 )
&
( X0_13!=constB39 )
&
( X0_13!=constB40 )
&
( X0_13!=constB41 )
&
( X0_13!=constB42 )
&
( X0_13!=constB43 )
&
( X0_13!=constB44 )
&
( X0_13!=constB45 )
&
( X0_13!=constB46 )
&
( X0_13!=constB47 )
&
( X0_13!=constB48 )
&
( X0_13!=constB49 )
&
( X0_13!=constB50 )
&
( X0_13!=constB51 )
&
( X0_13!=constB52 )
&
( X0_13!=constB53 )
&
( X0_13!=constB54 )
&
( X0_13!=constB55 )
&
( X0_13!=constB56 )
&
( X0_13!=constB57 )
&
( X0_13!=constB58 )
&
( X0_13!=constB59 )
&
( X0_13!=constB60 )
&
( X0_13!=constB61 )
&
( X0_13!=constB62 )
&
( X0_13!=constB63 )
&
( X0_13!=constB64 )
&
( X0_13!=constB65 )
&
( X0_13!=constB66 )
&
( X0_13!=constB67 )
&
( X0_13!=constB68 )
&
( X0_13!=constB69 )
&
( X0_13!=constB70 )
&
( X0_13!=constB71 )
&
( X0_13!=constB72 )
&
( X0_13!=constB73 )
&
( X0_13!=constB74 )
&
( X0_13!=constB75 )
&
( X0_13!=constB76 )
&
( X0_13!=constB77 )
&
( X0_13!=constB78 )
&
( X0_13!=constB79 )
&
( X0_13!=constB80 )
&
( X0_13!=constB81 )
&
( X0_13!=constB82 )
&
( X0_13!=constB83 )
&
( X0_13!=constB84 )
&
( X0_13!=constB85 )
&
( X0_13!=constB86 )
&
( X0_13!=constB87 )
&
( X0_13!=constB88 )
&
( X0_13!=constB89 )
&
( X0_13!=constB90 )
&
( X0_13!=constB91 )
&
( X0_13!=constB92 )
&
( X0_13!=constB93 )
&
( X0_13!=constB94 )
&
( X0_13!=constB95 )
&
( X0_13!=constB96 )
&
( X0_13!=constB97 )
&
( X0_13!=constB98 )
&
( X0_13!=constB99 )
&
( X0_13!=constB100 )
&
( X0_13!=constB101 )
&
( X0_13!=constB102 )
&
( X0_13!=constB103 )
&
( X0_13!=constB104 )
&
( X0_13!=constB105 )
&
( X0_13!=constB106 )
&
( X0_13!=constB107 )
&
( X0_13!=constB108 )
&
( X0_13!=constB109 )
&
( X0_13!=constB110 )
&
( X0_13!=constB111 )
&
( X0_13!=constB112 )
&
( X0_13!=constB113 )
&
( X0_13!=constB114 )
&
( X0_13!=constB115 )
&
( X0_13!=constB116 )
&
( X0_13!=constB117 )
&
( X0_13!=constB118 )
&
( X0_13!=constB119 )
&
( X0_13!=constB120 )
&
( X0_13!=constB121 )
&
( X0_13!=constB122 )
&
( X0_13!=constB123 )
&
( X0_13!=constB124 )
&
( X0_13!=constB125 )
&
( X0_13!=constB126 )
&
( X0_13!=constB127 )
&
( X0_13!=constB128 )
&
( X0_13!=constB129 )
&
( X0_13!=constB130 )
&
( X0_13!=constB131 )
&
( X0_13!=constB132 )
&
( X0_13!=constB133 )
&
( X0_13!=constB134 )
&
( X0_13!=constB135 )
&
( X0_13!=constB136 )
&
( X0_13!=constB137 )
&
( X0_13!=constB138 )
&
( X0_13!=constB139 )
&
( X0_13!=constB140 )
&
( X0_13!=constB141 )
&
( X0_13!=constB142 )
&
( X0_13!=constB143 )
&
( X0_13!=constB144 )
&
( X0_13!=constB145 )
&
( X0_13!=constB146 )
&
( X0_13!=constB147 )
&
( X0_13!=constB148 )
&
( X0_13!=constB149 )
&
( X0_13!=constB150 )
&
( X0_13!=constB151 )
&
( X0_13!=constB152 )
&
( X0_13!=constB153 )
&
( X0_13!=constB154 )
&
( X0_13!=constB155 )
&
( X0_13!=constB156 )
&
( X0_13!=constB157 )
&
( X0_13!=constB158 )
&
( X0_13!=constB159 )
&
( X0_13!=constB160 )
&
( X0_13!=constB161 )
&
( X0_13!=constB162 )
&
( X0_13!=constB163 )
&
( X0_13!=constB164 )
&
( X0_13!=constB165 )
&
( X0_13!=constB166 )
&
( X0_13!=constB167 )
&
( X0_13!=constB168 )
&
( X0_13!=constB169 )
&
( X0_13!=constB170 )
&
( X0_13!=constB171 )
&
( X0_13!=constB172 )
&
( X0_13!=constB173 )
&
( X0_13!=constB174 )
&
( X0_13!=constB175 )
&
( X0_13!=constB176 )
&
( X0_13!=constB177 )
&
( X0_13!=constB178 )
&
( X0_13!=constB179 )
&
( X0_13!=constB180 )
&
( X0_13!=constB181 )
&
( X0_13!=constB182 )
&
( X0_13!=constB183 )
&
( X0_13!=constB184 )
&
( X0_13!=constB185 )
&
( X0_13!=constB186 )
&
( X0_13!=constB187 )
&
( X0_13!=constB188 )
&
( X0_13!=constB189 )
&
( X0_13!=constB190 )
&
( X0_13!=constB191 )
&
( X0_13!=constB192 )
&
( X0_13!=constB193 )
&
( X0_13!=constB194 )
&
( X0_13!=constB195 )
&
( X0_13!=constB196 )
&
( X0_13!=constB197 )
&
( X0_13!=constB198 )
&
( X0_13!=constB199 )
&
( X0_13!=constB200 )
)

)
)
)
).

%------ Positive definition of v127
fof(lit_def,axiom,
(! [X0_13,X0_15] :
( v127(X0_13,X0_15) <=>
(
(
( X0_13=sK0_VarCurr & X0_15=bitIndex0 )
)

|
(
( X0_13=constB1 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB2 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB2 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB3 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB3 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB4 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB5 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB6 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB7 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB8 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB8 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB9 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB9 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB10 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB11 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB12 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB12 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB13 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB13 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB14 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB15 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB16 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB17 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB18 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB18 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB19 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB19 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB20 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB21 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB22 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB22 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB23 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB23 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB24 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB25 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB26 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB27 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB28 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB28 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB29 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB29 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB30 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB31 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB32 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB32 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB33 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB33 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB34 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB35 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB36 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB37 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB38 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB38 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB39 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB39 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB40 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB41 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB42 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB42 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB43 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB43 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB44 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB45 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB46 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB47 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB48 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB48 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB49 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB49 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB50 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB51 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB52 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB52 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB53 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB53 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB54 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB55 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB56 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB57 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB58 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB58 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB59 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB59 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB60 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB61 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB62 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB62 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB63 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB63 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB64 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB65 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB66 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB67 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB68 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB68 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB69 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB69 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB70 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB71 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB72 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB72 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB73 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB73 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB74 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB75 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB76 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB77 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB78 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB78 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB79 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB79 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB80 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB81 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB82 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB82 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB83 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB83 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB84 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB85 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB86 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB87 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB88 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB88 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB89 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB89 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB90 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB91 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB92 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB92 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB93 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB93 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB94 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB95 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB96 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB97 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB98 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB98 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB99 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB99 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB100 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB101 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB102 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB102 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB103 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB103 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB104 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB105 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB106 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB107 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB108 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB108 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB109 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB109 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB110 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB111 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB112 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB112 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB113 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB113 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB114 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB115 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB116 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB117 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB118 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB118 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB119 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB119 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB120 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB121 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB122 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB122 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB123 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB123 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB124 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB125 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB126 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB127 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB128 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB128 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB129 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB129 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB130 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB131 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB132 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB132 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB133 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB133 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB134 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB135 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB136 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB137 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB138 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB138 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB139 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB139 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB140 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB141 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB142 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB142 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB143 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB143 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB144 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB145 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB146 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB147 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB148 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB148 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB149 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB149 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB150 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB151 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB152 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB152 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB153 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB153 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB154 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB155 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB156 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB157 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB158 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB158 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB159 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB159 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB160 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB161 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB162 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB162 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB163 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB163 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB164 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB165 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB166 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB167 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB168 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB168 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB169 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB169 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB170 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB171 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB172 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB172 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB173 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB173 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB174 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB175 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB176 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB177 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB178 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB178 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB179 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB179 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB180 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB181 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB182 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB182 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB183 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB183 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB184 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB185 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB186 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB187 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB188 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB188 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB189 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB189 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB190 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB191 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB192 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB192 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB193 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB193 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB194 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB195 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB196 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB197 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB198 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB198 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB199 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB199 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB200 & X0_15=bitIndex2 )
)

|
(
( X0_15=bitIndex2 )
&
( X0_13!=sK0_VarCurr )
&
( X0_13!=constB2 )
&
( X0_13!=constB3 )
&
( X0_13!=constB4 )
&
( X0_13!=constB5 )
&
( X0_13!=constB6 )
&
( X0_13!=constB7 )
&
( X0_13!=constB8 )
&
( X0_13!=constB9 )
&
( X0_13!=constB10 )
&
( X0_13!=constB11 )
&
( X0_13!=constB12 )
&
( X0_13!=constB13 )
&
( X0_13!=constB14 )
&
( X0_13!=constB15 )
&
( X0_13!=constB16 )
&
( X0_13!=constB17 )
&
( X0_13!=constB18 )
&
( X0_13!=constB19 )
&
( X0_13!=constB20 )
&
( X0_13!=constB21 )
&
( X0_13!=constB22 )
&
( X0_13!=constB23 )
&
( X0_13!=constB24 )
&
( X0_13!=constB25 )
&
( X0_13!=constB26 )
&
( X0_13!=constB27 )
&
( X0_13!=constB28 )
&
( X0_13!=constB29 )
&
( X0_13!=constB30 )
&
( X0_13!=constB31 )
&
( X0_13!=constB32 )
&
( X0_13!=constB33 )
&
( X0_13!=constB34 )
&
( X0_13!=constB35 )
&
( X0_13!=constB36 )
&
( X0_13!=constB37 )
&
( X0_13!=constB38 )
&
( X0_13!=constB39 )
&
( X0_13!=constB40 )
&
( X0_13!=constB41 )
&
( X0_13!=constB42 )
&
( X0_13!=constB43 )
&
( X0_13!=constB44 )
&
( X0_13!=constB45 )
&
( X0_13!=constB46 )
&
( X0_13!=constB47 )
&
( X0_13!=constB48 )
&
( X0_13!=constB49 )
&
( X0_13!=constB50 )
&
( X0_13!=constB51 )
&
( X0_13!=constB52 )
&
( X0_13!=constB53 )
&
( X0_13!=constB54 )
&
( X0_13!=constB55 )
&
( X0_13!=constB56 )
&
( X0_13!=constB57 )
&
( X0_13!=constB58 )
&
( X0_13!=constB59 )
&
( X0_13!=constB60 )
&
( X0_13!=constB61 )
&
( X0_13!=constB62 )
&
( X0_13!=constB63 )
&
( X0_13!=constB64 )
&
( X0_13!=constB65 )
&
( X0_13!=constB66 )
&
( X0_13!=constB67 )
&
( X0_13!=constB68 )
&
( X0_13!=constB69 )
&
( X0_13!=constB70 )
&
( X0_13!=constB71 )
&
( X0_13!=constB72 )
&
( X0_13!=constB73 )
&
( X0_13!=constB74 )
&
( X0_13!=constB75 )
&
( X0_13!=constB76 )
&
( X0_13!=constB77 )
&
( X0_13!=constB78 )
&
( X0_13!=constB79 )
&
( X0_13!=constB80 )
&
( X0_13!=constB81 )
&
( X0_13!=constB82 )
&
( X0_13!=constB83 )
&
( X0_13!=constB84 )
&
( X0_13!=constB85 )
&
( X0_13!=constB86 )
&
( X0_13!=constB87 )
&
( X0_13!=constB88 )
&
( X0_13!=constB89 )
&
( X0_13!=constB90 )
&
( X0_13!=constB91 )
&
( X0_13!=constB92 )
&
( X0_13!=constB93 )
&
( X0_13!=constB94 )
&
( X0_13!=constB95 )
&
( X0_13!=constB96 )
&
( X0_13!=constB97 )
&
( X0_13!=constB98 )
&
( X0_13!=constB99 )
&
( X0_13!=constB100 )
&
( X0_13!=constB101 )
&
( X0_13!=constB102 )
&
( X0_13!=constB103 )
&
( X0_13!=constB104 )
&
( X0_13!=constB105 )
&
( X0_13!=constB106 )
&
( X0_13!=constB107 )
&
( X0_13!=constB108 )
&
( X0_13!=constB109 )
&
( X0_13!=constB110 )
&
( X0_13!=constB111 )
&
( X0_13!=constB112 )
&
( X0_13!=constB113 )
&
( X0_13!=constB114 )
&
( X0_13!=constB115 )
&
( X0_13!=constB116 )
&
( X0_13!=constB117 )
&
( X0_13!=constB118 )
&
( X0_13!=constB119 )
&
( X0_13!=constB120 )
&
( X0_13!=constB121 )
&
( X0_13!=constB122 )
&
( X0_13!=constB123 )
&
( X0_13!=constB124 )
&
( X0_13!=constB125 )
&
( X0_13!=constB126 )
&
( X0_13!=constB127 )
&
( X0_13!=constB128 )
&
( X0_13!=constB129 )
&
( X0_13!=constB130 )
&
( X0_13!=constB131 )
&
( X0_13!=constB132 )
&
( X0_13!=constB133 )
&
( X0_13!=constB134 )
&
( X0_13!=constB135 )
&
( X0_13!=constB136 )
&
( X0_13!=constB137 )
&
( X0_13!=constB138 )
&
( X0_13!=constB139 )
&
( X0_13!=constB140 )
&
( X0_13!=constB141 )
&
( X0_13!=constB142 )
&
( X0_13!=constB143 )
&
( X0_13!=constB144 )
&
( X0_13!=constB145 )
&
( X0_13!=constB146 )
&
( X0_13!=constB147 )
&
( X0_13!=constB148 )
&
( X0_13!=constB149 )
&
( X0_13!=constB150 )
&
( X0_13!=constB151 )
&
( X0_13!=constB152 )
&
( X0_13!=constB153 )
&
( X0_13!=constB154 )
&
( X0_13!=constB155 )
&
( X0_13!=constB156 )
&
( X0_13!=constB157 )
&
( X0_13!=constB158 )
&
( X0_13!=constB159 )
&
( X0_13!=constB160 )
&
( X0_13!=constB161 )
&
( X0_13!=constB162 )
&
( X0_13!=constB163 )
&
( X0_13!=constB164 )
&
( X0_13!=constB165 )
&
( X0_13!=constB166 )
&
( X0_13!=constB167 )
&
( X0_13!=constB168 )
&
( X0_13!=constB169 )
&
( X0_13!=constB170 )
&
( X0_13!=constB171 )
&
( X0_13!=constB172 )
&
( X0_13!=constB173 )
&
( X0_13!=constB174 )
&
( X0_13!=constB175 )
&
( X0_13!=constB176 )
&
( X0_13!=constB177 )
&
( X0_13!=constB178 )
&
( X0_13!=constB179 )
&
( X0_13!=constB180 )
&
( X0_13!=constB181 )
&
( X0_13!=constB182 )
&
( X0_13!=constB183 )
&
( X0_13!=constB184 )
&
( X0_13!=constB185 )
&
( X0_13!=constB186 )
&
( X0_13!=constB187 )
&
( X0_13!=constB188 )
&
( X0_13!=constB189 )
&
( X0_13!=constB190 )
&
( X0_13!=constB191 )
&
( X0_13!=constB192 )
&
( X0_13!=constB193 )
&
( X0_13!=constB194 )
&
( X0_13!=constB195 )
&
( X0_13!=constB196 )
&
( X0_13!=constB197 )
&
( X0_13!=constB198 )
&
( X0_13!=constB199 )
&
( X0_13!=constB200 )
)

)
)
)
).

%------ Positive definition of v129
fof(lit_def,axiom,
(! [X0_13,X0_15] :
( v129(X0_13,X0_15) <=>
(
(
( X0_13=sK0_VarCurr & X0_15=bitIndex0 )
)

|
(
( X0_13=constB1 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB2 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB3 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB3 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB4 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB4 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB5 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB6 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB7 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB8 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB9 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB9 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB10 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB10 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB11 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB12 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB13 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB13 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB14 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB14 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB15 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB16 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB17 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB18 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB19 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB19 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB20 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB20 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB21 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB22 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB23 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB23 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB24 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB24 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB25 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB26 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB27 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB28 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB29 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB29 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB30 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB30 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB31 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB32 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB33 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB33 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB34 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB34 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB35 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB36 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB37 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB38 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB39 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB39 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB40 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB40 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB41 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB42 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB43 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB43 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB44 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB44 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB45 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB46 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB47 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB48 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB49 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB49 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB50 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB50 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB51 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB52 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB53 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB53 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB54 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB54 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB55 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB56 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB57 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB58 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB59 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB59 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB60 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB60 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB61 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB62 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB63 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB63 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB64 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB64 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB65 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB66 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB67 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB68 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB69 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB69 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB70 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB70 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB71 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB72 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB73 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB73 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB74 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB74 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB75 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB76 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB77 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB78 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB79 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB79 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB80 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB80 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB81 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB82 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB83 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB83 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB84 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB84 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB85 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB86 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB87 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB88 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB89 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB89 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB90 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB90 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB91 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB92 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB93 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB93 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB94 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB94 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB95 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB96 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB97 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB98 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB99 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB99 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB100 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB100 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB101 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB102 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB103 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB103 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB104 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB104 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB105 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB106 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB107 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB108 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB109 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB109 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB110 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB110 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB111 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB112 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB113 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB113 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB114 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB114 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB115 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB116 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB117 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB118 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB119 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB119 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB120 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB120 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB121 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB122 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB123 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB123 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB124 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB124 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB125 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB126 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB127 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB128 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB129 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB129 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB130 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB130 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB131 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB132 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB133 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB133 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB134 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB134 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB135 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB136 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB137 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB138 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB139 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB139 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB140 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB140 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB141 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB142 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB143 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB143 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB144 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB144 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB145 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB146 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB147 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB148 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB149 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB149 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB150 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB150 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB151 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB152 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB153 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB153 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB154 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB154 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB155 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB156 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB157 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB158 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB159 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB159 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB160 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB160 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB161 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB162 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB163 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB163 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB164 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB164 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB165 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB166 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB167 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB168 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB169 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB169 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB170 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB170 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB171 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB172 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB173 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB173 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB174 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB174 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB175 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB176 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB177 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB178 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB179 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB179 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB180 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB180 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB181 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB182 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB183 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB183 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB184 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB184 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB185 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB186 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB187 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB188 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB189 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB189 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB190 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB190 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB191 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB192 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB193 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB193 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB194 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB194 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB195 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB196 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB197 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB198 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB199 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB199 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB200 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB200 & X0_15=bitIndex1 )
)

)
)
)
).

%------ Positive definition of v88
fof(lit_def,axiom,
(! [X0_13,X0_15] :
( v88(X0_13,X0_15) <=>
(
(
( X0_13=sK0_VarCurr & X0_15=bitIndex1 )
)

|
(
( X0_13=sK0_VarCurr & X0_15=bitIndex2 )
)

|
(
( X0_13=constB2 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB3 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB4 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB4 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB5 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB5 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB6 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB7 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB8 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB9 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB10 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB10 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB11 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB11 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB12 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB13 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB14 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB14 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB15 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB15 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB16 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB17 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB18 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB19 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB20 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB20 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB21 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB21 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB22 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB23 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB24 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB24 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB25 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB25 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB26 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB27 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB28 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB29 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB30 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB30 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB31 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB31 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB32 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB33 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB34 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB34 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB35 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB35 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB36 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB37 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB38 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB39 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB40 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB40 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB41 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB41 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB42 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB43 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB44 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB44 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB45 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB45 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB46 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB47 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB48 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB49 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB50 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB50 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB51 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB51 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB52 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB53 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB54 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB54 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB55 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB55 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB56 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB57 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB58 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB59 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB60 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB60 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB61 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB61 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB62 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB63 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB64 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB64 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB65 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB65 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB66 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB67 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB68 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB69 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB70 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB70 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB71 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB71 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB72 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB73 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB74 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB74 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB75 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB75 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB76 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB77 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB78 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB79 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB80 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB80 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB81 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB81 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB82 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB83 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB84 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB84 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB85 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB85 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB86 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB87 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB88 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB89 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB90 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB90 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB91 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB91 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB92 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB93 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB94 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB94 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB95 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB95 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB96 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB97 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB98 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB99 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB100 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB100 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB101 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB101 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB102 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB103 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB104 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB104 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB105 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB105 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB106 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB107 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB108 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB109 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB110 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB110 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB111 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB111 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB112 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB113 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB114 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB114 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB115 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB115 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB116 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB117 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB118 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB119 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB120 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB120 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB121 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB121 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB122 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB123 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB124 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB124 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB125 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB125 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB126 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB127 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB128 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB129 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB130 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB130 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB131 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB131 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB132 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB133 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB134 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB134 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB135 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB135 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB136 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB137 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB138 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB139 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB140 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB140 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB141 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB141 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB142 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB143 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB144 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB144 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB145 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB145 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB146 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB147 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB148 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB149 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB150 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB150 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB151 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB151 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB152 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB153 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB154 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB154 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB155 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB155 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB156 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB157 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB158 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB159 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB160 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB160 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB161 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB161 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB162 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB163 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB164 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB164 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB165 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB165 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB166 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB167 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB168 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB169 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB170 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB170 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB171 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB171 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB172 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB173 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB174 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB174 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB175 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB175 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB176 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB177 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB178 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB179 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB180 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB180 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB181 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB181 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB182 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB183 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB184 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB184 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB185 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB185 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB186 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB187 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB188 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB189 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB190 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB190 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB191 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB191 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB192 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB193 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB194 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB194 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB195 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB195 & X0_15=bitIndex2 )
)

|
(
( X0_13=constB196 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB197 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB198 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB199 & X0_15=bitIndex1 )
)

|
(
( X0_13=constB200 & X0_15=bitIndex0 )
)

|
(
( X0_13=constB200 & X0_15=bitIndex1 )
)

)
)
)
).

%------ Positive definition of v86
fof(lit_def,axiom,
(! [X0_13] :
( v86(X0_13) <=>
(
(
( X0_13=constB2 )
)

|
(
( X0_13=constB3 )
)

|
(
( X0_13=constB12 )
)

|
(
( X0_13=constB13 )
)

|
(
( X0_13=constB22 )
)

|
(
( X0_13=constB23 )
)

|
(
( X0_13=constB32 )
)

|
(
( X0_13=constB33 )
)

|
(
( X0_13=constB42 )
)

|
(
( X0_13=constB43 )
)

|
(
( X0_13=constB52 )
)

|
(
( X0_13=constB53 )
)

|
(
( X0_13=constB62 )
)

|
(
( X0_13=constB63 )
)

|
(
( X0_13=constB72 )
)

|
(
( X0_13=constB73 )
)

|
(
( X0_13=constB82 )
)

|
(
( X0_13=constB83 )
)

|
(
( X0_13=constB92 )
)

|
(
( X0_13=constB93 )
)

|
(
( X0_13=constB102 )
)

|
(
( X0_13=constB103 )
)

|
(
( X0_13=constB112 )
)

|
(
( X0_13=constB113 )
)

|
(
( X0_13=constB122 )
)

|
(
( X0_13=constB123 )
)

|
(
( X0_13=constB132 )
)

|
(
( X0_13=constB133 )
)

|
(
( X0_13=constB142 )
)

|
(
( X0_13=constB143 )
)

|
(
( X0_13=constB152 )
)

|
(
( X0_13=constB153 )
)

|
(
( X0_13=constB162 )
)

|
(
( X0_13=constB163 )
)

|
(
( X0_13=constB172 )
)

|
(
( X0_13=constB173 )
)

|
(
( X0_13=constB182 )
)

|
(
( X0_13=constB183 )
)

|
(
( X0_13=constB192 )
)

|
(
( X0_13=constB193 )
)

)
)
)
).

%------ Positive definition of v162
fof(lit_def,axiom,
(! [X0_13] :
( v162(X0_13) <=>
(
(
( X0_13=constB10 )
)

|
(
( X0_13=constB11 )
)

|
(
( X0_13=constB20 )
)

|
(
( X0_13=constB21 )
)

|
(
( X0_13=constB30 )
)

|
(
( X0_13=constB31 )
)

|
(
( X0_13=constB40 )
)

|
(
( X0_13=constB41 )
)

|
(
( X0_13=constB50 )
)

|
(
( X0_13=constB51 )
)

|
(
( X0_13=constB60 )
)

|
(
( X0_13=constB61 )
)

|
(
( X0_13=constB70 )
)

|
(
( X0_13=constB71 )
)

|
(
( X0_13=constB80 )
)

|
(
( X0_13=constB81 )
)

|
(
( X0_13=constB90 )
)

|
(
( X0_13=constB91 )
)

|
(
( X0_13=constB100 )
)

|
(
( X0_13=constB101 )
)

|
(
( X0_13=constB110 )
)

|
(
( X0_13=constB111 )
)

|
(
( X0_13=constB120 )
)

|
(
( X0_13=constB121 )
)

|
(
( X0_13=constB130 )
)

|
(
( X0_13=constB131 )
)

|
(
( X0_13=constB140 )
)

|
(
( X0_13=constB141 )
)

|
(
( X0_13=constB150 )
)

|
(
( X0_13=constB151 )
)

|
(
( X0_13=constB160 )
)

|
(
( X0_13=constB161 )
)

|
(
( X0_13=constB170 )
)

|
(
( X0_13=constB171 )
)

|
(
( X0_13=constB180 )
)

|
(
( X0_13=constB181 )
)

|
(
( X0_13=constB190 )
)

|
(
( X0_13=constB191 )
)

|
(
( X0_13=constB200 )
)

)
)
)
).

%------ Negative definition of v166
fof(lit_def,axiom,
(! [X0_13] :
( ~(v166(X0_13)) <=>
(
(
( X0_13=constB2 )
)

|
(
( X0_13=constB3 )
)

|
(
( X0_13=constB12 )
)

|
(
( X0_13=constB13 )
)

|
(
( X0_13=constB22 )
)

|
(
( X0_13=constB23 )
)

|
(
( X0_13=constB32 )
)

|
(
( X0_13=constB33 )
)

|
(
( X0_13=constB42 )
)

|
(
( X0_13=constB43 )
)

|
(
( X0_13=constB52 )
)

|
(
( X0_13=constB53 )
)

|
(
( X0_13=constB62 )
)

|
(
( X0_13=constB63 )
)

|
(
( X0_13=constB72 )
)

|
(
( X0_13=constB73 )
)

|
(
( X0_13=constB82 )
)

|
(
( X0_13=constB83 )
)

|
(
( X0_13=constB92 )
)

|
(
( X0_13=constB93 )
)

|
(
( X0_13=constB102 )
)

|
(
( X0_13=constB103 )
)

|
(