## TPTP Problem File: CSR031+1.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : CSR031+1 : TPTP v8.0.0. Released v3.4.0.
% Domain   : Common Sense Reasoning
% Problem  : Autogenerated Cyc Problem CSR031+1
% Version  : Especial.
% English  :

% Refs     : [RS+]   Reagan Smith et al., The Cyc TPTP Challenge Problem
% Source   : [RS+]
% Names    :

% Status   : Theorem
% Rating   : 0.00 v5.5.0, 0.11 v5.3.0, 0.09 v5.2.0, 0.00 v4.1.0, 0.06 v4.0.1, 0.00 v3.4.0
% Syntax   : Number of formulae    :   56 (  11 unt;   0 def)
%            Number of atoms       :  115 (   0 equ)
%            Maximal formula atoms :    3 (   2 avg)
%            Number of connectives :   63 (   4   ~;   0   |;  17   &)
%                                         (   0 <=>;  42  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    7 (   4 avg)
%            Maximal term depth    :    1 (   1 avg)
%            Number of predicates  :   16 (  16 usr;   0 prp; 1-2 aty)
%            Number of functors    :   11 (  11 usr;  11 con; 0-0 aty)
%            Number of variables   :   92 (  92   !;   0   ?)
% SPC      : FOF_THM_EPR_NEQ

% Comments : Autogenerated from the OpenCyc KB. Documentation can be found at
%            http://opencyc.org/doc/#TPTP_Challenge_Problem_Set
%          : Cyc(R) Knowledge Base Copyright(C) 1995-2007 Cycorp, Inc., Austin,
%          : OpenCyc Knowledge Base Copyright(C) 2001-2007 Cycorp, Inc.,
%------------------------------------------------------------------------------
%\$problem_series(cyc_scaling_1,[CSR025+1,CSR026+1,CSR027+1,CSR028+1,CSR029+1,CSR030+1,CSR031+1,CSR032+1,CSR033+1,CSR034+1,CSR035+1,CSR036+1,CSR037+1,CSR038+1,CSR039+1,CSR040+1,CSR041+1,CSR042+1,CSR043+1,CSR044+1,CSR045+1,CSR046+1,CSR047+1,CSR048+1,CSR049+1,CSR050+1,CSR051+1,CSR052+1,CSR053+1,CSR054+1,CSR055+1,CSR056+1,CSR057+1,CSR058+1,CSR059+1,CSR060+1,CSR061+1,CSR062+1,CSR063+1,CSR064+1,CSR065+1,CSR066+1,CSR067+1,CSR068+1,CSR069+1,CSR070+1,CSR071+1,CSR072+1,CSR073+1,CSR074+1])
%\$static(cyc_scaling_1,include('Axioms/CSR002+0.ax'))
%----Empty file include('Axioms/CSR002+0.ax').
%------------------------------------------------------------------------------
% Cyc Assertion #954903:
fof(just1,axiom,
genlmt(c_universalvocabularymt,c_corecyclmt) ).

% Cyc Assertion #1322220:
fof(just2,axiom,
transitivebinarypredicate(c_genlmt) ).

% Cyc Assertion #1326245:
fof(just3,axiom,
genlmt(c_corecyclmt,c_logicaltruthmt) ).

% Cyc Assertion #1558442:
fof(just4,axiom,
! [OBJ] :
~ ( collection(OBJ)
& individual(OBJ) ) ).

fof(just5,axiom,
disjointwith(c_collection,c_individual) ).

% Cyc Assertion #2230906:
fof(just6,axiom,
individual(c_tptptptpcol_16_8398) ).

% Cyc Assertion #398814:
fof(just7,axiom,
! [OBJ,COL1,COL2] :
~ ( isa(OBJ,COL1)
& isa(OBJ,COL2)
& disjointwith(COL1,COL2) ) ).

% Cyc Assertion #831913:
fof(just8,axiom,
! [SPECPRED,PRED,GENLPRED] :
( ( genlinverse(SPECPRED,PRED)
& genlinverse(PRED,GENLPRED) )
=> genlpreds(SPECPRED,GENLPRED) ) ).

% Cyc Assertion #352680:
fof(just9,axiom,
arg2isa(c_disjointwith,c_collection) ).

fof(just10,axiom,
! [ARG1,ARG2] :
( disjointwith(ARG1,ARG2)
=> collection(ARG2) ) ).

% Cyc Assertion #398814:
fof(just11,axiom,
! [OBJ,COL1,COL2] :
~ ( isa(OBJ,COL1)
& isa(OBJ,COL2)
& disjointwith(COL1,COL2) ) ).

% Cyc Assertion #831913:
fof(just12,axiom,
! [SPECPRED,PRED,GENLPRED] :
( ( genlinverse(SPECPRED,PRED)
& genlinverse(PRED,GENLPRED) )
=> genlpreds(SPECPRED,GENLPRED) ) ).

% Cyc Constant #59425:
fof(just13,axiom,
! [ARG1,INS] :
( arg2isa(ARG1,INS)
=> collection(INS) ) ).

fof(just14,axiom,
! [INS,ARG2] :
( arg2isa(INS,ARG2)
=> relation(INS) ) ).

fof(just15,axiom,
! [ARG1,OLD,NEW] :
( ( arg2isa(ARG1,OLD)
& genls(OLD,NEW) )
=> arg2isa(ARG1,NEW) ) ).

fof(just16,axiom,
! [ARG1,OLD,NEW] :
( ( arg2isa(ARG1,OLD)
& genls(OLD,NEW) )
=> arg2isa(ARG1,NEW) ) ).

% Cyc Constant #40273:
fof(just17,axiom,
! [ARG1,INS] :
( genlpreds(ARG1,INS)
=> predicate(INS) ) ).

fof(just18,axiom,
! [ARG1,INS] :
( genlpreds(ARG1,INS)
=> predicate(INS) ) ).

fof(just19,axiom,
! [INS,ARG2] :
( genlpreds(INS,ARG2)
=> predicate(INS) ) ).

fof(just20,axiom,
! [INS,ARG2] :
( genlpreds(INS,ARG2)
=> predicate(INS) ) ).

fof(just21,axiom,
! [X,Y,Z] :
( ( genlpreds(X,Y)
& genlpreds(Y,Z) )
=> genlpreds(X,Z) ) ).

fof(just22,axiom,
! [X] :
( predicate(X)
=> genlpreds(X,X) ) ).

fof(just23,axiom,
! [X] :
( predicate(X)
=> genlpreds(X,X) ) ).

% Cyc Constant #45259:
fof(just24,axiom,
! [ARG1,INS] :
( genlinverse(ARG1,INS)
=> binarypredicate(INS) ) ).

fof(just25,axiom,
! [INS,ARG2] :
( genlinverse(INS,ARG2)
=> binarypredicate(INS) ) ).

fof(just26,axiom,
! [OLD,ARG2,NEW] :
( ( genlinverse(OLD,ARG2)
& genlpreds(NEW,OLD) )
=> genlinverse(NEW,ARG2) ) ).

fof(just27,axiom,
! [ARG1,OLD,NEW] :
( ( genlinverse(ARG1,OLD)
& genlpreds(OLD,NEW) )
=> genlinverse(ARG1,NEW) ) ).

% Cyc Constant #27757:
fof(just28,axiom,
mtvisible(c_basekb) ).

% Cyc Constant #113597:
fof(just29,axiom,
! [X] :
( isa(X,c_individual)
=> individual(X) ) ).

fof(just30,axiom,
! [X] :
( individual(X)
=> isa(X,c_individual) ) ).

% Cyc Constant #19726:
fof(just31,axiom,
! [X] :
( isa(X,c_collection)
=> collection(X) ) ).

fof(just32,axiom,
! [X] :
( collection(X)
=> isa(X,c_collection) ) ).

% Cyc Constant #78648:
fof(just33,axiom,
! [ARG1,INS] :
( disjointwith(ARG1,INS)
=> collection(INS) ) ).

fof(just34,axiom,
! [INS,ARG2] :
( disjointwith(INS,ARG2)
=> collection(INS) ) ).

fof(just35,axiom,
! [X,Y] :
( disjointwith(X,Y)
=> disjointwith(Y,X) ) ).

fof(just36,axiom,
! [ARG1,OLD,NEW] :
( ( disjointwith(ARG1,OLD)
& genls(NEW,OLD) )
=> disjointwith(ARG1,NEW) ) ).

fof(just37,axiom,
! [OLD,ARG2,NEW] :
( ( disjointwith(OLD,ARG2)
& genls(NEW,OLD) )
=> disjointwith(NEW,ARG2) ) ).

% Cyc Constant #52963:
fof(just38,axiom,
mtvisible(c_logicaltruthmt) ).

% Cyc Constant #127156:
fof(just39,axiom,
! [X] :
( isa(X,c_transitivebinarypredicate)
=> transitivebinarypredicate(X) ) ).

fof(just40,axiom,
! [X] :
( transitivebinarypredicate(X)
=> isa(X,c_transitivebinarypredicate) ) ).

% Cyc Constant #72115:
fof(just41,axiom,
! [ARG1,INS] :
( isa(ARG1,INS)
=> collection(INS) ) ).

fof(just42,axiom,
! [ARG1,INS] :
( isa(ARG1,INS)
=> collection(INS) ) ).

fof(just43,axiom,
! [INS,ARG2] :
( isa(INS,ARG2)
=> thing(INS) ) ).

fof(just44,axiom,
! [INS,ARG2] :
( isa(INS,ARG2)
=> thing(INS) ) ).

fof(just45,axiom,
! [ARG1,OLD,NEW] :
( ( isa(ARG1,OLD)
& genls(OLD,NEW) )
=> isa(ARG1,NEW) ) ).

% Cyc Constant #80185:
fof(just46,axiom,
mtvisible(c_corecyclmt) ).

% Cyc Constant #19550:
fof(just47,axiom,
! [SPECMT,GENLMT] :
( ( mtvisible(SPECMT)
& genlmt(SPECMT,GENLMT) )
=> mtvisible(GENLMT) ) ).

fof(just48,axiom,
! [ARG1,INS] :
( genlmt(ARG1,INS)
=> microtheory(INS) ) ).

fof(just49,axiom,
! [ARG1,INS] :
( genlmt(ARG1,INS)
=> microtheory(INS) ) ).

fof(just50,axiom,
! [INS,ARG2] :
( genlmt(INS,ARG2)
=> microtheory(INS) ) ).

fof(just51,axiom,
! [INS,ARG2] :
( genlmt(INS,ARG2)
=> microtheory(INS) ) ).

fof(just52,axiom,
! [X,Y,Z] :
( ( genlmt(X,Y)
& genlmt(Y,Z) )
=> genlmt(X,Z) ) ).

fof(just53,axiom,
! [X] :
( microtheory(X)
=> genlmt(X,X) ) ).

fof(just54,axiom,
! [X] :
( microtheory(X)
=> genlmt(X,X) ) ).

% Cyc Constant #95028:
fof(just55,axiom,
mtvisible(c_universalvocabularymt) ).

fof(query31,conjecture,
~ disjointwith(c_tptptptpcol_16_8398,c_tptpcol_16_18488) ).

%------------------------------------------------------------------------------
```