TPTP Problem File: CSR032+1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : CSR032+1 : TPTP v8.1.0. Released v3.4.0.
% Domain   : Common Sense Reasoning
% Problem  : Autogenerated Cyc Problem CSR032+1
% Version  : Especial.
% English  :

% Refs     : [RS+]   Reagan Smith et al., The Cyc TPTP Challenge Problem
% Source   : [RS+]
% Names    :

% Status   : Theorem
% Rating   : 0.00 v6.1.0, 0.04 v6.0.0, 0.25 v5.5.0, 0.12 v5.4.0, 0.17 v5.3.0, 0.26 v5.2.0, 0.14 v5.0.0, 0.15 v4.1.0, 0.11 v4.0.1, 0.05 v3.7.0, 0.00 v3.4.0
% Syntax   : Number of formulae    :   68 (  14 unt;   0 def)
%            Number of atoms       :  135 (   0 equ)
%            Maximal formula atoms :    3 (   1 avg)
%            Number of connectives :   68 (   1   ~;   0   |;  14   &)
%                                         (   0 <=>;  53  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    7 (   4 avg)
%            Maximal term depth    :    2 (   1 avg)
%            Number of predicates  :   19 (  19 usr;   0 prp; 1-3 aty)
%            Number of functors    :   16 (  16 usr;  15 con; 0-2 aty)
%            Number of variables   :  108 ( 107   !;   1   ?)
% SPC      : FOF_THM_RFO_NEQ

% Comments : Autogenerated from the OpenCyc KB. Documentation can be found at
%            http://opencyc.org/doc/#TPTP_Challenge_Problem_Set
%          : Cyc(R) Knowledge Base Copyright(C) 1995-2007 Cycorp, Inc., Austin,
%            TX, USA. All rights reserved.
%          : OpenCyc Knowledge Base Copyright(C) 2001-2007 Cycorp, Inc.,
%            Austin, TX, USA. All rights reserved.
%------------------------------------------------------------------------------
%$problem_series(cyc_scaling_1,[CSR025+1,CSR026+1,CSR027+1,CSR028+1,CSR029+1,CSR030+1,CSR031+1,CSR032+1,CSR033+1,CSR034+1,CSR035+1,CSR036+1,CSR037+1,CSR038+1,CSR039+1,CSR040+1,CSR041+1,CSR042+1,CSR043+1,CSR044+1,CSR045+1,CSR046+1,CSR047+1,CSR048+1,CSR049+1,CSR050+1,CSR051+1,CSR052+1,CSR053+1,CSR054+1,CSR055+1,CSR056+1,CSR057+1,CSR058+1,CSR059+1,CSR060+1,CSR061+1,CSR062+1,CSR063+1,CSR064+1,CSR065+1,CSR066+1,CSR067+1,CSR068+1,CSR069+1,CSR070+1,CSR071+1,CSR072+1,CSR073+1,CSR074+1])
%$static(cyc_scaling_1,include('Axioms/CSR002+0.ax'))
%----Empty file include('Axioms/CSR002+0.ax').
%------------------------------------------------------------------------------
% Cyc Assertion #426678:
fof(just1,axiom,
    individual(f_citynamedfn(s_agen,c_france)) ).

% Cyc Assertion #638580:
fof(just2,axiom,
    genls(c_trajector_underspecified,c_location_underspecified) ).

fof(just3,axiom,
    ! [OBJ] :
      ( trajector_underspecified(OBJ)
     => location_underspecified(OBJ) ) ).

% Cyc Assertion #753566:
fof(just4,axiom,
    genls(c_location_underspecified,c_thing) ).

fof(just5,axiom,
    ! [OBJ] :
      ( location_underspecified(OBJ)
     => thing(OBJ) ) ).

% Cyc Assertion #899762:
fof(just6,axiom,
    genlmt(c_humansociallifemt,c_basekb) ).

% Cyc Assertion #1322220:
fof(just7,axiom,
    transitivebinarypredicate(c_genlmt) ).

% Cyc Assertion #1408590:
fof(just8,axiom,
    genlmt(c_reasoningaboutpossibleantecedentsmt,c_humansociallifemt) ).

% Cyc Assertion #1610244:
fof(just9,axiom,
    genls(c_individual,c_trajector_underspecified) ).

fof(just10,axiom,
    ! [OBJ] :
      ( individual(OBJ)
     => trajector_underspecified(OBJ) ) ).

% Cyc Assertion #1650755:
fof(just11,axiom,
    genlmt(c_basekb,c_universalvocabularymt) ).

% Cyc Assertion #398814:
fof(just12,axiom,
    ! [OBJ,COL1,COL2] :
      ~ ( isa(OBJ,COL1)
        & isa(OBJ,COL2)
        & disjointwith(COL1,COL2) ) ).

% Cyc Assertion #831913:
fof(just13,axiom,
    ! [SPECPRED,PRED,GENLPRED] :
      ( ( genlinverse(SPECPRED,PRED)
        & genlinverse(PRED,GENLPRED) )
     => genlpreds(SPECPRED,GENLPRED) ) ).

% Cyc Constant #40273:
fof(just14,axiom,
    ! [ARG1,INS] :
      ( genlpreds(ARG1,INS)
     => predicate(INS) ) ).

fof(just15,axiom,
    ! [ARG1,INS] :
      ( genlpreds(ARG1,INS)
     => predicate(INS) ) ).

fof(just16,axiom,
    ! [INS,ARG2] :
      ( genlpreds(INS,ARG2)
     => predicate(INS) ) ).

fof(just17,axiom,
    ! [INS,ARG2] :
      ( genlpreds(INS,ARG2)
     => predicate(INS) ) ).

fof(just18,axiom,
    ! [X,Y,Z] :
      ( ( genlpreds(X,Y)
        & genlpreds(Y,Z) )
     => genlpreds(X,Z) ) ).

fof(just19,axiom,
    ! [X] :
      ( predicate(X)
     => genlpreds(X,X) ) ).

fof(just20,axiom,
    ! [X] :
      ( predicate(X)
     => genlpreds(X,X) ) ).

% Cyc Constant #45259:
fof(just21,axiom,
    ! [ARG1,INS] :
      ( genlinverse(ARG1,INS)
     => binarypredicate(INS) ) ).

fof(just22,axiom,
    ! [INS,ARG2] :
      ( genlinverse(INS,ARG2)
     => binarypredicate(INS) ) ).

fof(just23,axiom,
    ! [OLD,ARG2,NEW] :
      ( ( genlinverse(OLD,ARG2)
        & genlpreds(NEW,OLD) )
     => genlinverse(NEW,ARG2) ) ).

fof(just24,axiom,
    ! [ARG1,OLD,NEW] :
      ( ( genlinverse(ARG1,OLD)
        & genlpreds(OLD,NEW) )
     => genlinverse(ARG1,NEW) ) ).

% Cyc Constant #78648:
fof(just25,axiom,
    ! [ARG1,INS] :
      ( disjointwith(ARG1,INS)
     => collection(INS) ) ).

fof(just26,axiom,
    ! [INS,ARG2] :
      ( disjointwith(INS,ARG2)
     => collection(INS) ) ).

fof(just27,axiom,
    ! [X,Y] :
      ( disjointwith(X,Y)
     => disjointwith(Y,X) ) ).

fof(just28,axiom,
    ! [ARG1,OLD,NEW] :
      ( ( disjointwith(ARG1,OLD)
        & genls(NEW,OLD) )
     => disjointwith(ARG1,NEW) ) ).

fof(just29,axiom,
    ! [OLD,ARG2,NEW] :
      ( ( disjointwith(OLD,ARG2)
        & genls(NEW,OLD) )
     => disjointwith(NEW,ARG2) ) ).

% Cyc Constant #127156:
fof(just30,axiom,
    ! [X] :
      ( isa(X,c_transitivebinarypredicate)
     => transitivebinarypredicate(X) ) ).

fof(just31,axiom,
    ! [X] :
      ( transitivebinarypredicate(X)
     => isa(X,c_transitivebinarypredicate) ) ).

% Cyc Constant #27757:
fof(just32,axiom,
    mtvisible(c_basekb) ).

% Cyc Constant #19550:
fof(just33,axiom,
    ! [SPECMT,GENLMT] :
      ( ( mtvisible(SPECMT)
        & genlmt(SPECMT,GENLMT) )
     => mtvisible(GENLMT) ) ).

fof(just34,axiom,
    ! [ARG1,INS] :
      ( genlmt(ARG1,INS)
     => microtheory(INS) ) ).

fof(just35,axiom,
    ! [ARG1,INS] :
      ( genlmt(ARG1,INS)
     => microtheory(INS) ) ).

fof(just36,axiom,
    ! [INS,ARG2] :
      ( genlmt(INS,ARG2)
     => microtheory(INS) ) ).

fof(just37,axiom,
    ! [INS,ARG2] :
      ( genlmt(INS,ARG2)
     => microtheory(INS) ) ).

fof(just38,axiom,
    ! [X,Y,Z] :
      ( ( genlmt(X,Y)
        & genlmt(Y,Z) )
     => genlmt(X,Z) ) ).

fof(just39,axiom,
    ! [X] :
      ( microtheory(X)
     => genlmt(X,X) ) ).

fof(just40,axiom,
    ! [X] :
      ( microtheory(X)
     => genlmt(X,X) ) ).

% Cyc Constant #48859:
fof(just41,axiom,
    ! [X] :
      ( isa(X,c_thing)
     => thing(X) ) ).

fof(just42,axiom,
    ! [X] :
      ( thing(X)
     => isa(X,c_thing) ) ).

% Cyc Constant #14857:
fof(just43,axiom,
    ! [X] :
      ( isa(X,c_location_underspecified)
     => location_underspecified(X) ) ).

fof(just44,axiom,
    ! [X] :
      ( location_underspecified(X)
     => isa(X,c_location_underspecified) ) ).

% Cyc Constant #24658:
fof(just45,axiom,
    ! [X] :
      ( isa(X,c_trajector_underspecified)
     => trajector_underspecified(X) ) ).

fof(just46,axiom,
    ! [X] :
      ( trajector_underspecified(X)
     => isa(X,c_trajector_underspecified) ) ).

% Cyc Constant #0:
fof(just47,axiom,
    ! [ARG1,INS] :
      ( genls(ARG1,INS)
     => collection(INS) ) ).

fof(just48,axiom,
    ! [ARG1,INS] :
      ( genls(ARG1,INS)
     => collection(INS) ) ).

fof(just49,axiom,
    ! [INS,ARG2] :
      ( genls(INS,ARG2)
     => collection(INS) ) ).

fof(just50,axiom,
    ! [INS,ARG2] :
      ( genls(INS,ARG2)
     => collection(INS) ) ).

fof(just51,axiom,
    ! [X,Y,Z] :
      ( ( genls(X,Y)
        & genls(Y,Z) )
     => genls(X,Z) ) ).

fof(just52,axiom,
    ! [X] :
      ( collection(X)
     => genls(X,X) ) ).

fof(just53,axiom,
    ! [X] :
      ( collection(X)
     => genls(X,X) ) ).

fof(just54,axiom,
    ! [OLD,ARG2,NEW] :
      ( ( genls(OLD,ARG2)
        & genls(NEW,OLD) )
     => genls(NEW,ARG2) ) ).

fof(just55,axiom,
    ! [ARG1,OLD,NEW] :
      ( ( genls(ARG1,OLD)
        & genls(OLD,NEW) )
     => genls(ARG1,NEW) ) ).

% Cyc Constant #113597:
fof(just56,axiom,
    ! [X] :
      ( isa(X,c_individual)
     => individual(X) ) ).

fof(just57,axiom,
    ! [X] :
      ( individual(X)
     => isa(X,c_individual) ) ).

% Cyc Constant #97068:
fof(just58,axiom,
    ! [ARG1,ARG2] : natfunction(f_citynamedfn(ARG1,ARG2),c_citynamedfn) ).

fof(just59,axiom,
    ! [ARG1,ARG2] : natargument(f_citynamedfn(ARG1,ARG2),n_1,ARG1) ).

fof(just60,axiom,
    ! [ARG1,ARG2] : natargument(f_citynamedfn(ARG1,ARG2),n_2,ARG2) ).

fof(just61,axiom,
    ! [ARG1,ARG2] : city(f_citynamedfn(ARG1,ARG2)) ).

% Cyc Constant #72115:
fof(just62,axiom,
    ! [ARG1,INS] :
      ( isa(ARG1,INS)
     => collection(INS) ) ).

fof(just63,axiom,
    ! [ARG1,INS] :
      ( isa(ARG1,INS)
     => collection(INS) ) ).

fof(just64,axiom,
    ! [INS,ARG2] :
      ( isa(INS,ARG2)
     => thing(INS) ) ).

fof(just65,axiom,
    ! [INS,ARG2] :
      ( isa(INS,ARG2)
     => thing(INS) ) ).

fof(just66,axiom,
    ! [ARG1,OLD,NEW] :
      ( ( isa(ARG1,OLD)
        & genls(OLD,NEW) )
     => isa(ARG1,NEW) ) ).

% Cyc Constant #95028:
fof(just67,axiom,
    mtvisible(c_universalvocabularymt) ).

fof(query32,conjecture,
    ? [COL] :
      ( mtvisible(c_reasoningaboutpossibleantecedentsmt)
     => isa(f_citynamedfn(s_agen,c_france),COL) ) ).

%------------------------------------------------------------------------------