## TPTP Problem File: CSR034+1.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : CSR034+1 : TPTP v8.1.0. Released v3.4.0.
% Domain   : Common Sense Reasoning
% Problem  : Autogenerated Cyc Problem CSR034+1
% Version  : Especial.
% English  :

% Refs     : [RS+]   Reagan Smith et al., The Cyc TPTP Challenge Problem
% Source   : [RS+]
% Names    :

% Status   : Theorem
% Rating   : 0.07 v7.5.0, 0.05 v7.4.0, 0.12 v7.3.0, 0.14 v7.2.0, 0.17 v7.1.0, 0.25 v7.0.0, 0.00 v6.1.0, 0.04 v6.0.0, 0.25 v5.5.0, 0.08 v5.4.0, 0.13 v5.3.0, 0.22 v5.2.0, 0.07 v5.0.0, 0.10 v4.1.0, 0.06 v4.0.1, 0.00 v3.4.0
% Syntax   : Number of formulae    :   71 (  21 unt;   0 def)
%            Number of atoms       :  135 (   0 equ)
%            Maximal formula atoms :    3 (   1 avg)
%            Number of connectives :   65 (   1   ~;   0   |;  15   &)
%                                         (   0 <=>;  49  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    7 (   3 avg)
%            Maximal term depth    :    2 (   1 avg)
%            Number of predicates  :   17 (  17 usr;   0 prp; 1-3 aty)
%            Number of functors    :   26 (  26 usr;  25 con; 0-1 aty)
%            Number of variables   :   97 (  96   !;   1   ?)
% SPC      : FOF_THM_RFO_NEQ

% Comments : Autogenerated from the OpenCyc KB. Documentation can be found at
%            http://opencyc.org/doc/#TPTP_Challenge_Problem_Set
%          : Cyc(R) Knowledge Base Copyright(C) 1995-2007 Cycorp, Inc., Austin,
%          : OpenCyc Knowledge Base Copyright(C) 2001-2007 Cycorp, Inc.,
%------------------------------------------------------------------------------
%\$problem_series(cyc_scaling_1,[CSR025+1,CSR026+1,CSR027+1,CSR028+1,CSR029+1,CSR030+1,CSR031+1,CSR032+1,CSR033+1,CSR034+1,CSR035+1,CSR036+1,CSR037+1,CSR038+1,CSR039+1,CSR040+1,CSR041+1,CSR042+1,CSR043+1,CSR044+1,CSR045+1,CSR046+1,CSR047+1,CSR048+1,CSR049+1,CSR050+1,CSR051+1,CSR052+1,CSR053+1,CSR054+1,CSR055+1,CSR056+1,CSR057+1,CSR058+1,CSR059+1,CSR060+1,CSR061+1,CSR062+1,CSR063+1,CSR064+1,CSR065+1,CSR066+1,CSR067+1,CSR068+1,CSR069+1,CSR070+1,CSR071+1,CSR072+1,CSR073+1,CSR074+1])
%\$static(cyc_scaling_1,include('Axioms/CSR002+0.ax'))
%----Empty file include('Axioms/CSR002+0.ax').
%------------------------------------------------------------------------------
% Cyc Assertion #190772:
fof(just1,axiom,
genlmt(c_worldgeographydualistmt,c_worldgeographymt) ).

% Cyc Assertion #233936:
fof(just2,axiom,
genlmt(c_ethnicgroupsvocabularymt,c_worldcompletedualistgeographymt) ).

% Cyc Assertion #566511:
fof(just3,axiom,
genlmt(c_cyclistsmt,c_hpkbvocabmt) ).

% Cyc Assertion #583547:
fof(just4,axiom,
genlmt(c_nooescapearchitecturemt,c_organizationdatamt) ).

% Cyc Assertion #591557:
fof(just5,axiom,
genlmt(c_testvocabularymt,c_nooescapearchitecturemt) ).

% Cyc Assertion #797186:
fof(just6,axiom,
( mtvisible(c_hpkbvocabmt)
=> genls(c_state_geopolitical,c_hpkb_subnationalagent) ) ).

fof(just7,axiom,
! [OBJ] :
( ( mtvisible(c_hpkbvocabmt)
& state_geopolitical(OBJ) )
=> hpkb_subnationalagent(OBJ) ) ).

% Cyc Assertion #974757:
fof(just8,axiom,
genlmt(c_unitedstatesgeographydualistmt,c_worldgeographydualistmt) ).

% Cyc Assertion #1030084:
fof(just9,axiom,
genlmt(c_cyclistsmt,c_keinteractionresourcetestmt) ).

% Cyc Assertion #1038166:
fof(just10,axiom,
genlmt(c_keinteractionresourcetestmt,c_testvocabularymt) ).

% Cyc Assertion #1132949:
fof(just11,axiom,
genlmt(c_worldcompletedualistgeographymt,c_unitedstatesgeographydualistmt) ).

% Cyc Assertion #1262542:
fof(just12,axiom,

% Cyc Assertion #1322220:
fof(just13,axiom,
transitivebinarypredicate(c_genlmt) ).

% Cyc Assertion #1508031:
fof(just14,axiom,
( mtvisible(c_worldgeographymt)
=> state_geopolitical(c_wanica_districtsuriname) ) ).

% Cyc Assertion #1545258:
fof(just15,axiom,
genlmt(c_ethnicgroupsmt,c_ethnicgroupsvocabularymt) ).

% Cyc Assertion #1753642:
fof(just16,axiom,
genlmt(c_organizationdatamt,f_contextofpcwfn(c_ap_martha_stewart_omnimedia_names_chairman)) ).

% Cyc Assertion #1757575:
fof(just17,axiom,

% Cyc Assertion #2170932:
fof(just18,axiom,

% Cyc Assertion #2184995:
fof(just19,axiom,

% Cyc Assertion #398814:
fof(just20,axiom,
! [OBJ,COL1,COL2] :
~ ( isa(OBJ,COL1)
& isa(OBJ,COL2)
& disjointwith(COL1,COL2) ) ).

% Cyc Assertion #831913:
fof(just21,axiom,
! [SPECPRED,PRED,GENLPRED] :
( ( genlinverse(SPECPRED,PRED)
& genlinverse(PRED,GENLPRED) )
=> genlpreds(SPECPRED,GENLPRED) ) ).

% Cyc Constant #40273:
fof(just22,axiom,
! [ARG1,INS] :
( genlpreds(ARG1,INS)
=> predicate(INS) ) ).

fof(just23,axiom,
! [ARG1,INS] :
( genlpreds(ARG1,INS)
=> predicate(INS) ) ).

fof(just24,axiom,
! [INS,ARG2] :
( genlpreds(INS,ARG2)
=> predicate(INS) ) ).

fof(just25,axiom,
! [INS,ARG2] :
( genlpreds(INS,ARG2)
=> predicate(INS) ) ).

fof(just26,axiom,
! [X,Y,Z] :
( ( genlpreds(X,Y)
& genlpreds(Y,Z) )
=> genlpreds(X,Z) ) ).

fof(just27,axiom,
! [X] :
( predicate(X)
=> genlpreds(X,X) ) ).

fof(just28,axiom,
! [X] :
( predicate(X)
=> genlpreds(X,X) ) ).

% Cyc Constant #45259:
fof(just29,axiom,
! [ARG1,INS] :
( genlinverse(ARG1,INS)
=> binarypredicate(INS) ) ).

fof(just30,axiom,
! [INS,ARG2] :
( genlinverse(INS,ARG2)
=> binarypredicate(INS) ) ).

fof(just31,axiom,
! [OLD,ARG2,NEW] :
( ( genlinverse(OLD,ARG2)
& genlpreds(NEW,OLD) )
=> genlinverse(NEW,ARG2) ) ).

fof(just32,axiom,
! [ARG1,OLD,NEW] :
( ( genlinverse(ARG1,OLD)
& genlpreds(OLD,NEW) )
=> genlinverse(ARG1,NEW) ) ).

% Cyc Constant #78648:
fof(just33,axiom,
! [ARG1,INS] :
( disjointwith(ARG1,INS)
=> collection(INS) ) ).

fof(just34,axiom,
! [INS,ARG2] :
( disjointwith(INS,ARG2)
=> collection(INS) ) ).

fof(just35,axiom,
! [X,Y] :
( disjointwith(X,Y)
=> disjointwith(Y,X) ) ).

fof(just36,axiom,
! [ARG1,OLD,NEW] :
( ( disjointwith(ARG1,OLD)
& genls(NEW,OLD) )
=> disjointwith(ARG1,NEW) ) ).

fof(just37,axiom,
! [OLD,ARG2,NEW] :
( ( disjointwith(OLD,ARG2)
& genls(NEW,OLD) )
=> disjointwith(NEW,ARG2) ) ).

% Cyc Constant #27757:
fof(just38,axiom,
mtvisible(c_basekb) ).

% Cyc Constant #113102:
fof(just39,axiom,
! [ARG1] : natfunction(f_contextofpcwfn(ARG1),c_contextofpcwfn) ).

fof(just40,axiom,
! [ARG1] : natargument(f_contextofpcwfn(ARG1),n_1,ARG1) ).

fof(just41,axiom,
! [ARG1] : microtheory(f_contextofpcwfn(ARG1)) ).

% Cyc Constant #127156:
fof(just42,axiom,
! [X] :
( isa(X,c_transitivebinarypredicate)
=> transitivebinarypredicate(X) ) ).

fof(just43,axiom,
! [X] :
( transitivebinarypredicate(X)
=> isa(X,c_transitivebinarypredicate) ) ).

% Cyc Constant #72115:
fof(just44,axiom,
! [ARG1,INS] :
( isa(ARG1,INS)
=> collection(INS) ) ).

fof(just45,axiom,
! [ARG1,INS] :
( isa(ARG1,INS)
=> collection(INS) ) ).

fof(just46,axiom,
! [INS,ARG2] :
( isa(INS,ARG2)
=> thing(INS) ) ).

fof(just47,axiom,
! [INS,ARG2] :
( isa(INS,ARG2)
=> thing(INS) ) ).

fof(just48,axiom,
! [ARG1,OLD,NEW] :
( ( isa(ARG1,OLD)
& genls(OLD,NEW) )
=> isa(ARG1,NEW) ) ).

% Cyc Constant #105210:
fof(just49,axiom,
! [X] :
( isa(X,c_hpkb_subnationalagent)
=> hpkb_subnationalagent(X) ) ).

fof(just50,axiom,
! [X] :
( hpkb_subnationalagent(X)
=> isa(X,c_hpkb_subnationalagent) ) ).

% Cyc Constant #123012:
fof(just51,axiom,
! [X] :
( isa(X,c_state_geopolitical)
=> state_geopolitical(X) ) ).

fof(just52,axiom,
! [X] :
( state_geopolitical(X)
=> isa(X,c_state_geopolitical) ) ).

% Cyc Constant #0:
fof(just53,axiom,
! [ARG1,INS] :
( genls(ARG1,INS)
=> collection(INS) ) ).

fof(just54,axiom,
! [ARG1,INS] :
( genls(ARG1,INS)
=> collection(INS) ) ).

fof(just55,axiom,
! [INS,ARG2] :
( genls(INS,ARG2)
=> collection(INS) ) ).

fof(just56,axiom,
! [INS,ARG2] :
( genls(INS,ARG2)
=> collection(INS) ) ).

fof(just57,axiom,
! [X,Y,Z] :
( ( genls(X,Y)
& genls(Y,Z) )
=> genls(X,Z) ) ).

fof(just58,axiom,
! [X] :
( collection(X)
=> genls(X,X) ) ).

fof(just59,axiom,
! [X] :
( collection(X)
=> genls(X,X) ) ).

fof(just60,axiom,
! [OLD,ARG2,NEW] :
( ( genls(OLD,ARG2)
& genls(NEW,OLD) )
=> genls(NEW,ARG2) ) ).

fof(just61,axiom,
! [ARG1,OLD,NEW] :
( ( genls(ARG1,OLD)
& genls(OLD,NEW) )
=> genls(ARG1,NEW) ) ).

% Cyc Constant #19550:
fof(just62,axiom,
! [SPECMT,GENLMT] :
( ( mtvisible(SPECMT)
& genlmt(SPECMT,GENLMT) )
=> mtvisible(GENLMT) ) ).

fof(just63,axiom,
! [ARG1,INS] :
( genlmt(ARG1,INS)
=> microtheory(INS) ) ).

fof(just64,axiom,
! [ARG1,INS] :
( genlmt(ARG1,INS)
=> microtheory(INS) ) ).

fof(just65,axiom,
! [INS,ARG2] :
( genlmt(INS,ARG2)
=> microtheory(INS) ) ).

fof(just66,axiom,
! [INS,ARG2] :
( genlmt(INS,ARG2)
=> microtheory(INS) ) ).

fof(just67,axiom,
! [X,Y,Z] :
( ( genlmt(X,Y)
& genlmt(Y,Z) )
=> genlmt(X,Z) ) ).

fof(just68,axiom,
! [X] :
( microtheory(X)
=> genlmt(X,X) ) ).

fof(just69,axiom,
! [X] :
( microtheory(X)
=> genlmt(X,X) ) ).

% Cyc Constant #95028:
fof(just70,axiom,
mtvisible(c_universalvocabularymt) ).

fof(query34,conjecture,
? [COL] :
( mtvisible(c_tptp_member3515_mt)
=> isa(c_wanica_districtsuriname,COL) ) ).

%------------------------------------------------------------------------------
```