## TPTP Problem File: CSR114+4.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : CSR114+4 : TPTP v8.1.2. Released v4.0.0.
% Domain   : Commonsense Reasoning
% Problem  : In which Italian city can you find the Colosseum?
% Version  : [Pel09] axioms.
% English  :

% Refs     : [Glo07] Gloeckner (2007), University of Hagen at CLEF 2007: An
%          : [PW07]  Pelzer & Wernhard (2007), System Description: E-KRHype
%          : [FG+08] Furbach et al. (2008), LogAnswer - A Deduction-Based Q
%          : [Pel09] Pelzer (2009), Email to Geoff Sutcliffe
% Source   : [Pel09]
% Names    : synth_qa07_004_insicht_3_tptp [Pel09]

% Status   : Theorem
% Rating   : 0.20 v8.1.0, 0.21 v7.5.0, 0.29 v7.4.0, 0.25 v7.3.0, 0.29 v7.2.0, 0.17 v7.1.0, 0.25 v7.0.0, 0.29 v6.4.0, 0.21 v6.3.0, 0.23 v6.2.0, 0.36 v6.1.0, 0.52 v6.0.0, 0.50 v5.4.0, 0.48 v5.3.0, 0.57 v5.2.0, 0.36 v5.0.0, 0.40 v4.1.0, 0.50 v4.0.1, 0.47 v4.0.0
% Syntax   : Number of formulae    : 10189 (10061 unt;   0 def)
%            Number of atoms       : 10878 (   0 equ)
%            Maximal formula atoms :  171 (   1 avg)
%            Number of connectives :  689 (   0   ~;  18   |; 545   &)
%                                         (   0 <=>; 126  =>;   0  <=;   0 <~>)
%            Maximal formula depth :  171 (   1 avg)
%            Maximal term depth    :    5 (   1 avg)
%            Number of predicates  :   90 (  90 usr;   0 prp; 2-3 aty)
%            Number of functors    : 16661 (16661 usr;16660 con; 0-2 aty)
%            Number of variables   :  473 ( 405   !;  68   ?)
% SPC      : FOF_THM_RFO_NEQ

% Comments : The different versions of this problem stem from the use of
%            different text snippet retrieval modules, and different snippets
%            being found. The problem tries to prove the questions from the
%            snippet and the background knowledge.
%------------------------------------------------------------------------------
include('Axioms/CSR004+0.ax').
%------------------------------------------------------------------------------
fof(synth_qa07_004_insicht_3,conjecture,
? [X0,X1,X2,X3,X4] :
( in(X2,X0)
& attr(X0,X1)
& loc(X4,X2)
& scar(X4,X3)
& sub(X1,name_1_1)
& sub(X3,kolosseum_1_1)
& subs(X4,stehen_1_1)
& val(X1,rom_0) ) ).

fof(ave07_era5_synth_qa07_004_insicht_3,hypothesis,
( chsp2(bekommen_1_1,c0)
& attch(c12058,c7)
& attr(c12058,c12059)
& sub(c12059,name_1_1)
& val(c12059,verona_0)
& modp(c12087,zwei_1_1,c0)
& arg1(c12093,c7)
& arg2(c12093,c12602)
& assoc(c12093,c12583)
& semrel(c12093,c16)
& subr(c12093,equ_0)
& loc(c12583,c12608)
& sub(c12583,kolosseum_1_1)
& attr(c12594,c12595)
& sub(c12595,name_1_1)
& val(c12595,rom_0)
& prop(c12602,c0)
& prop(c12602,c12605)
& sub(c12602,amphi_theater_1_1)
& supl(c12605,zweitgro__337_1_1,c12606)
& in(c12608,c12594)
& arg1(c16,c7)
& arg2(c16,c7)
& subr(c16,sub_0)
& equ(c7,c12602)
& prop(c7,c12087)
& prop(c7,r__366misch__1_1)
& sub(c7,amphi_theater_1_1)
& sub(c7,arena__1_1)
& sub(c7,c7)
& sort(bekommen_1_1,dn)
& fact(bekommen_1_1,real)
& gener(bekommen_1_1,ge)
& sort(c0,tq)
& sort(c12058,d)
& sort(c12058,io)
& card(c12058,int1)
& etype(c12058,int0)
& fact(c12058,real)
& gener(c12058,sp)
& quant(c12058,one)
& refer(c12058,det)
& varia(c12058,con)
& sort(c7,d)
& card(c7,int1)
& etype(c7,int0)
& fact(c7,real)
& gener(c7,sp)
& quant(c7,one)
& refer(c7,det)
& varia(c7,con)
& sort(c12059,na)
& card(c12059,int1)
& etype(c12059,int0)
& fact(c12059,real)
& gener(c12059,sp)
& quant(c12059,one)
& refer(c12059,indet)
& varia(c12059,varia_c)
& sort(name_1_1,na)
& card(name_1_1,int1)
& etype(name_1_1,int0)
& fact(name_1_1,real)
& gener(name_1_1,ge)
& quant(name_1_1,one)
& refer(name_1_1,refer_c)
& varia(name_1_1,varia_c)
& sort(verona_0,fe)
& sort(c12087,tq)
& sort(zwei_1_1,nq)
& sort(c12093,st)
& fact(c12093,real)
& gener(c12093,sp)
& sort(c12602,co)
& card(c12602,card_c)
& etype(c12602,etype_c)
& fact(c12602,real)
& gener(c12602,sp)
& quant(c12602,quant_c)
& refer(c12602,det)
& varia(c12602,con)
& sort(c12583,d)
& card(c12583,int1)
& etype(c12583,int0)
& fact(c12583,real)
& gener(c12583,sp)
& quant(c12583,one)
& refer(c12583,det)
& varia(c12583,con)
& sort(c16,st)
& fact(c16,real)
& gener(c16,sp)
& sort(equ_0,st)
& fact(equ_0,real)
& gener(equ_0,gener_c)
& sort(c12608,l)
& card(c12608,int1)
& etype(c12608,int0)
& fact(c12608,real)
& gener(c12608,sp)
& quant(c12608,one)
& refer(c12608,det)
& varia(c12608,con)
& sort(kolosseum_1_1,d)
& card(kolosseum_1_1,int1)
& etype(kolosseum_1_1,int0)
& fact(kolosseum_1_1,real)
& gener(kolosseum_1_1,sp)
& quant(kolosseum_1_1,one)
& refer(kolosseum_1_1,det)
& varia(kolosseum_1_1,con)
& sort(c12594,d)
& sort(c12594,io)
& card(c12594,int1)
& etype(c12594,int0)
& fact(c12594,real)
& gener(c12594,sp)
& quant(c12594,one)
& refer(c12594,det)
& varia(c12594,con)
& sort(c12595,na)
& card(c12595,int1)
& etype(c12595,int0)
& fact(c12595,real)
& gener(c12595,sp)
& quant(c12595,one)
& refer(c12595,indet)
& varia(c12595,varia_c)
& sort(rom_0,fe)
& sort(c12605,tq)
& sort(amphi_theater_1_1,o)
& card(amphi_theater_1_1,int1)
& etype(amphi_theater_1_1,int0)
& fact(amphi_theater_1_1,real)
& gener(amphi_theater_1_1,ge)
& quant(amphi_theater_1_1,one)
& refer(amphi_theater_1_1,refer_c)
& varia(amphi_theater_1_1,varia_c)
& sort(zweitgro__337_1_1,mq)
& sort(c12606,o)
& card(c12606,card_c)
& etype(c12606,int1)
& etype(c12606,int2)
& fact(c12606,real)
& gener(c12606,gener_c)
& quant(c12606,quant_c)
& refer(c12606,refer_c)
& varia(c12606,varia_c)
& sort(sub_0,st)
& fact(sub_0,real)
& gener(sub_0,gener_c)
& sort(r__366misch__1_1,tq)
& sort(arena__1_1,d)
& card(arena__1_1,int1)
& etype(arena__1_1,int0)
& fact(arena__1_1,real)
& gener(arena__1_1,ge)
& quant(arena__1_1,one)
& refer(arena__1_1,refer_c)
& varia(arena__1_1,varia_c) ) ).

%------------------------------------------------------------------------------
```