TPTP Problem File: GEO169+1.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : GEO169+1 : TPTP v8.1.0. Released v3.2.0.
% Domain   : Geometry
% Problem  : Reduction of 8 cases to 2 in Cronheim's proof of Hessenberg
% Version  : Especial.
% English  :

% Refs     : [Bez05] Bezem (2005), Email to Geoff Sutcliffe
% Source   : [Bez05]
% Names    : cro_8_2 [Bez05]

% Status   : Theorem
% Rating   : 0.00 v6.1.0, 0.17 v6.0.0, 0.00 v5.5.0, 0.11 v5.4.0, 0.22 v5.3.0, 0.36 v5.2.0, 0.25 v5.0.0, 0.00 v4.1.0, 0.33 v4.0.1, 0.37 v4.0.0, 0.30 v3.7.0, 0.67 v3.5.0, 0.38 v3.4.0, 0.25 v3.3.0, 0.11 v3.2.0
% Syntax   : Number of formulae    :   51 (  28 unt;   0 def)
%            Number of atoms       :   93 (   0 equ)
%            Maximal formula atoms :    6 (   1 avg)
%            Number of connectives :   42 (   0   ~;   4   |;  18   &)
%                                         (   0 <=>;  20  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    9 (   2 avg)
%            Maximal term depth    :    1 (   1 avg)
%            Number of predicates  :    4 (   4 usr;   1 prp; 0-2 aty)
%            Number of functors    :   19 (  19 usr;  19 con; 0-0 aty)
%            Number of variables   :   27 (  27   !;   0   ?)
% SPC      : FOF_THM_EPR_NEQ

%------------------------------------------------------------------------------
fof(goal_normal,axiom,
! [A] :
( ( line_equal(A,A)
& incident(bc,A)
& incident(ac,A)
& incident(ab,A) )
=> goal ) ).

fof(t1in2,axiom,
( ( incident(a1,b2c2)
& incident(b1,a2c2)
& incident(c1,a2b2) )
=> goal ) ).

fof(t2in1,axiom,
( ( incident(a2,b1c1)
& incident(b2,a1c1)
& incident(c2,a1b1) )
=> goal ) ).

fof(gap_a,axiom,
( incident(a1,b2c2)
| incident(b2,a1c1) ) ).

fof(gap_b,axiom,
( incident(b1,a2c2)
| incident(c2,a1b1) ) ).

fof(gap_c,axiom,
( incident(c1,a2b2)
| incident(a2,b1c1) ) ).

fof(ia1b1,axiom,
incident(a1,a1b1) ).

fof(ib1a1,axiom,
incident(b1,a1b1) ).

fof(ia2b2,axiom,
incident(a2,a2b2) ).

fof(ib2a2,axiom,
incident(b2,a2b2) ).

fof(ia1c1,axiom,
incident(a1,a1c1) ).

fof(ic1a1,axiom,
incident(c1,a1c1) ).

fof(ia2c2,axiom,
incident(a2,a2c2) ).

fof(ic2a2,axiom,
incident(c2,a2c2) ).

fof(ic1b1,axiom,
incident(c1,b1c1) ).

fof(ib1c1,axiom,
incident(b1,b1c1) ).

fof(ic2b2,axiom,
incident(c2,b2c2) ).

fof(ib2c2,axiom,
incident(b2,b2c2) ).

fof(iooa,axiom,
incident(o,oa) ).

fof(ioob,axiom,
incident(o,ob) ).

fof(iooc,axiom,
incident(o,oc) ).

fof(ia1oa,axiom,
incident(a1,oa) ).

fof(ia2oa,axiom,
incident(a2,oa) ).

fof(ib1ob,axiom,
incident(b1,ob) ).

fof(ib2ob,axiom,
incident(b2,ob) ).

fof(ic1oc,axiom,
incident(c1,oc) ).

fof(ic2oc,axiom,
incident(c2,oc) ).

fof(ibc1,axiom,
incident(bc,b1c1) ).

fof(ibc2,axiom,
incident(bc,b2c2) ).

fof(iac1,axiom,
incident(ac,a1c1) ).

fof(iac2,axiom,
incident(ac,a2c2) ).

fof(iab1,axiom,
incident(ab,a1b1) ).

fof(iab2,axiom,
incident(ab,a2b2) ).

fof(triangle1,axiom,
! [A] :
( ( incident(a1,A)
& incident(b1,A)
& incident(c1,A) )
=> goal ) ).

fof(triangle2,axiom,
! [A] :
( ( incident(a2,A)
& incident(b2,A)
& incident(c2,A) )
=> goal ) ).

fof(notaa,axiom,
( point_equal(a2,a1)
=> goal ) ).

fof(notbb,axiom,
( point_equal(b2,b1)
=> goal ) ).

fof(notcc,axiom,
( point_equal(c2,c1)
=> goal ) ).

fof(notbc,axiom,
( line_equal(b1c1,b2c2)
=> goal ) ).

fof(notac,axiom,
( line_equal(a1c1,a2c2)
=> goal ) ).

fof(notab,axiom,
( line_equal(a1b1,a2b2)
=> goal ) ).

fof(reflexivity_of_point_equal,axiom,
! [A,B] :
( incident(A,B)
=> point_equal(A,A) ) ).

fof(symmetry_of_point_equal,axiom,
! [A,B] :
( point_equal(A,B)
=> point_equal(B,A) ) ).

fof(transitivity_of_point_equal,axiom,
! [A,B,C] :
( ( point_equal(A,B)
& point_equal(B,C) )
=> point_equal(A,C) ) ).

fof(reflexivity_of_line_equal,axiom,
! [A,B] :
( incident(A,B)
=> line_equal(B,B) ) ).

fof(symmetry_of_line_equal,axiom,
! [A,B] :
( line_equal(A,B)
=> line_equal(B,A) ) ).

fof(transitivity_of_line_equal,axiom,
! [A,B,C] :
( ( line_equal(A,B)
& line_equal(B,C) )
=> line_equal(A,C) ) ).

fof(pcon,axiom,
! [A,B,C] :
( ( point_equal(A,B)
& incident(B,C) )
=> incident(A,C) ) ).

fof(lcon,axiom,
! [A,B,C] :
( ( incident(A,B)
& line_equal(B,C) )
=> incident(A,C) ) ).

fof(unique,axiom,
! [A,B,C,D] :
( ( incident(A,C)
& incident(A,D)
& incident(B,C)
& incident(B,D) )
=> ( point_equal(A,B)
| line_equal(C,D) ) ) ).

fof(goal_to_be_proved,conjecture,
goal ).

%------------------------------------------------------------------------------
```