## TPTP Problem File: ITP004^1.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : ITP004^1 : TPTP v8.1.2. Bugfixed v7.5.0.
% Domain   : Interactive Theorem Proving
% Problem  : HOL4 syntactic export of thm_2Epred__set_2EREST__SUBSET.p, bushy mode
% Version  : [BG+19] axioms.
% English  :

% Refs     : [BG+19] Brown et al. (2019), GRUNGE: A Grand Unified ATP Chall
%          : [Gau19] Gauthier (2019), Email to Geoff Sutcliffe
% Source   : [BG+19]
% Names    : thm_2Epred__set_2EREST__SUBSET.p [Gau19]
%          : HL401501^1.p [TPAP]

% Status   : Theorem
% Rating   : 0.54 v8.1.0, 0.45 v7.5.0
% Syntax   : Number of formulae    :   83 (  25 unt;  50 typ;   0 def)
%            Number of atoms       :   58 (  26 equ;   2 cnn)
%            Maximal formula atoms :    4 (   1 avg)
%            Number of connectives :  672 (   2   ~;   1   |;   2   &; 654   @)
%                                         (  10 <=>;   3  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   17 (   6 avg)
%            Number of types       :    4 (   3 usr)
%            Number of type conns  :   61 (  61   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   49 (  47 usr;  21 con; 0-3 aty)
%            Number of variables   :   79 (   0   ^  78   !;   1   ?;  79   :)
% SPC      : TH0_THM_EQU_NAR

% Bugfixes : v7.5.0 - Bugfixes in axioms and export.
%------------------------------------------------------------------------------
thf(u,type,
u: \$tType ).

thf(d,type,
d: \$tType ).

thf(du,type,
du: \$tType ).

thf(tyop_2Emin_2Ebool,type,
tyop_2Emin_2Ebool: d ).

thf(tyop_2Emin_2Efun,type,
tyop_2Emin_2Efun: d > d > d ).

thf(s,type,
s: d > u > du ).

thf(app_2E2,type,
app_2E2: du > du > u ).

thf(combin_i_2E0,type,
combin_i_2E0: u ).

thf(combin_k_2E0,type,
combin_k_2E0: u ).

thf(combin_s_2E0,type,
combin_s_2E0: u ).

thf(c_2Ebool_2E_21_2E0,type,
c_2Ebool_2E_21_2E0: u ).

thf(c_2Ebool_2E_21_2E1,type,
c_2Ebool_2E_21_2E1: du > u ).

thf(c_2Ebool_2E_2F_5C_2E0,type,
c_2Ebool_2E_2F_5C_2E0: u ).

thf(c_2Ebool_2E_2F_5C_2E2,type,
c_2Ebool_2E_2F_5C_2E2: du > du > u ).

thf(c_2Emin_2E_3D_2E0,type,
c_2Emin_2E_3D_2E0: u ).

thf(c_2Emin_2E_3D_2E2,type,
c_2Emin_2E_3D_2E2: du > du > u ).

thf(c_2Emin_2E_3D_3D_3E_2E0,type,
c_2Emin_2E_3D_3D_3E_2E0: u ).

thf(c_2Emin_2E_3D_3D_3E_2E2,type,
c_2Emin_2E_3D_3D_3E_2E2: du > du > u ).

thf(c_2Ebool_2E_3F_2E0,type,
c_2Ebool_2E_3F_2E0: u ).

thf(c_2Ebool_2E_3F_2E1,type,
c_2Ebool_2E_3F_2E1: du > u ).

thf(c_2Epred__set_2ECHOICE_2E0,type,
c_2Epred__set_2ECHOICE_2E0: u ).

thf(c_2Epred__set_2ECHOICE_2E1,type,
c_2Epred__set_2ECHOICE_2E1: du > u ).

thf(c_2Epred__set_2EDELETE_2E0,type,
c_2Epred__set_2EDELETE_2E0: u ).

thf(c_2Epred__set_2EDELETE_2E2,type,
c_2Epred__set_2EDELETE_2E2: du > du > u ).

thf(c_2Ebool_2EF_2E0,type,
c_2Ebool_2EF_2E0: u ).

thf(c_2Ebool_2EIN_2E0,type,
c_2Ebool_2EIN_2E0: u ).

thf(c_2Ebool_2EIN_2E2,type,
c_2Ebool_2EIN_2E2: du > du > u ).

thf(c_2Epred__set_2EREST_2E0,type,
c_2Epred__set_2EREST_2E0: u ).

thf(c_2Epred__set_2EREST_2E1,type,
c_2Epred__set_2EREST_2E1: du > u ).

thf(c_2Epred__set_2ESUBSET_2E0,type,
c_2Epred__set_2ESUBSET_2E0: u ).

thf(c_2Epred__set_2ESUBSET_2E2,type,
c_2Epred__set_2ESUBSET_2E2: du > du > u ).

thf(c_2Ebool_2ET_2E0,type,
c_2Ebool_2ET_2E0: u ).

thf(c_2Ebool_2E_5C_2F_2E0,type,
c_2Ebool_2E_5C_2F_2E0: u ).

thf(c_2Ebool_2E_5C_2F_2E2,type,
c_2Ebool_2E_5C_2F_2E2: du > du > u ).

thf(c_2Ebool_2E_7E_2E0,type,
c_2Ebool_2E_7E_2E0: u ).

thf(c_2Ebool_2E_7E_2E1,type,
c_2Ebool_2E_7E_2E1: du > u ).

thf(mono_2Eapp_2Emono_2Etyop_2Emin_2Ebool_20mono_2Etyop_2Emin_2Ebool,type,
mono_2Eapp_2Emono_2Etyop_2Emin_2Ebool_20mono_2Etyop_2Emin_2Ebool: ( \$o > \$o ) > \$o > \$o ).

thf(mono_2Eapp_2Emono_2Etyop_2Emin_2Ebool_20mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29,type,
mono_2Eapp_2Emono_2Etyop_2Emin_2Ebool_20mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29: ( \$o > \$o > \$o ) > \$o > \$o > \$o ).

thf(mono_2Ec_2Ebool_2E_2F_5C,type,
mono_2Ec_2Ebool_2E_2F_5C: \$o > \$o > \$o ).

thf(mono_2Ec_2Emin_2E_3D_3D_3E,type,
mono_2Ec_2Emin_2E_3D_3D_3E: \$o > \$o > \$o ).

thf(mono_2Ec_2Ebool_2EF,type,
mono_2Ec_2Ebool_2EF: \$o ).

thf(mono_2Ec_2Ebool_2ET,type,
mono_2Ec_2Ebool_2ET: \$o ).

thf(mono_2Ec_2Ebool_2E_5C_2F,type,
mono_2Ec_2Ebool_2E_5C_2F: \$o > \$o > \$o ).

thf(mono_2Ec_2Ebool_2E_7E,type,
mono_2Ec_2Ebool_2E_7E: \$o > \$o ).

thf(i_mono_2Etyop_2Emin_2Ebool,type,
i_mono_2Etyop_2Emin_2Ebool: \$o > u ).

thf(i_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29,type,
i_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29: ( \$o > \$o ) > u ).

thf(i_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29_29,type,
i_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29_29: ( \$o > \$o > \$o ) > u ).

thf(j_mono_2Etyop_2Emin_2Ebool,type,
j_mono_2Etyop_2Emin_2Ebool: du > \$o ).

thf(j_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29,type,
j_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29: du > \$o > \$o ).

thf(j_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29_29,type,
j_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29_29: du > \$o > \$o > \$o ).

thf(reserved_2Eho_2Eeq__ext,axiom,
! [A_27a: d,A_27b: d,V0f_2E0: u,V1g_2E0: u] :
( ! [V2x_2E0: u] :
( ( s @ A_27b @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ V0f_2E0 ) @ ( s @ A_27a @ V2x_2E0 ) ) )
= ( s @ A_27b @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ V1g_2E0 ) @ ( s @ A_27a @ V2x_2E0 ) ) ) )
=> ( ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ V0f_2E0 )
= ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ V1g_2E0 ) ) ) ).

thf(reserved_2Eho_2Ei__thm,axiom,
! [A_27a: d,V0x_2E0: u] :
( ( s @ A_27a @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27a ) @ combin_i_2E0 ) @ ( s @ A_27a @ V0x_2E0 ) ) )
= ( s @ A_27a @ V0x_2E0 ) ) ).

thf(reserved_2Eho_2Ek__thm,axiom,
! [A_27a: d,A_27b: d,V0x_2E0: u,V1y_2E0: u] :
( ( s @ A_27a @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27b @ A_27a ) @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ ( tyop_2Emin_2Efun @ A_27b @ A_27a ) ) @ combin_k_2E0 ) @ ( s @ A_27a @ V0x_2E0 ) ) ) @ ( s @ A_27b @ V1y_2E0 ) ) )
= ( s @ A_27a @ V0x_2E0 ) ) ).

thf(reserved_2Eho_2Es__thm,axiom,
! [A_27a: d,A_27b: d,A_27c: d,V0f_2E0: u,V1g_2E0: u,V2x_2E0: u] :
( ( s @ A_27c @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27c ) @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ ( tyop_2Emin_2Efun @ A_27a @ A_27c ) ) @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ ( tyop_2Emin_2Efun @ A_27a @ ( tyop_2Emin_2Efun @ A_27b @ A_27c ) ) @ ( tyop_2Emin_2Efun @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ ( tyop_2Emin_2Efun @ A_27a @ A_27c ) ) ) @ combin_s_2E0 ) @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ ( tyop_2Emin_2Efun @ A_27b @ A_27c ) ) @ V0f_2E0 ) ) ) @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ V1g_2E0 ) ) ) @ ( s @ A_27a @ V2x_2E0 ) ) )
= ( s @ A_27c @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27b @ A_27c ) @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ ( tyop_2Emin_2Efun @ A_27b @ A_27c ) ) @ V0f_2E0 ) @ ( s @ A_27a @ V2x_2E0 ) ) ) @ ( s @ A_27b @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ V1g_2E0 ) @ ( s @ A_27a @ V2x_2E0 ) ) ) ) ) ) ).

thf(reserved_2Elogic_2E_2F_5C,axiom,
! [V0: \$o,V1: \$o] :
( ( mono_2Ec_2Ebool_2E_2F_5C @ V0 @ V1 )
<=> ( V0
& V1 ) ) ).

thf(reserved_2Elogic_2E_5C_2F,axiom,
! [V0: \$o,V1: \$o] :
( ( mono_2Ec_2Ebool_2E_5C_2F @ V0 @ V1 )
<=> ( V0
| V1 ) ) ).

thf(reserved_2Elogic_2E_7E,axiom,
! [V0: \$o] :
( ( mono_2Ec_2Ebool_2E_7E @ V0 )
<=> ( (~) @ V0 ) ) ).

thf(reserved_2Elogic_2E_3D_3D_3E,axiom,
! [V0: \$o,V1: \$o] :
( ( mono_2Ec_2Emin_2E_3D_3D_3E @ V0 @ V1 )
<=> ( V0
=> V1 ) ) ).

thf(reserved_2Elogic_2E_3D,axiom,
! [A_27a: d,V0_2E0: u,V1_2E0: u] :
( ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( c_2Emin_2E_3D_2E2 @ ( s @ A_27a @ V0_2E0 ) @ ( s @ A_27a @ V1_2E0 ) ) ) )
<=> ( ( s @ A_27a @ V0_2E0 )
= ( s @ A_27a @ V1_2E0 ) ) ) ).

thf(reserved_2Equant_2E_21,axiom,
! [A_27a: d,V0f_2E0: u] :
( ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( c_2Ebool_2E_21_2E1 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ V0f_2E0 ) ) ) )
<=> ! [V1x_2E0: u] : ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ V0f_2E0 ) @ ( s @ A_27a @ V1x_2E0 ) ) ) ) ) ).

thf(reserved_2Equant_2E_3F,axiom,
! [A_27a: d,V0f_2E0: u] :
( ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( c_2Ebool_2E_3F_2E1 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ V0f_2E0 ) ) ) )
<=> ? [V1x_2E0: u] : ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ V0f_2E0 ) @ ( s @ A_27a @ V1x_2E0 ) ) ) ) ) ).

thf(ij_2Emono_2Etyop_2Emin_2Ebool,axiom,
! [V0_2E0: u] :
( ( s @ tyop_2Emin_2Ebool @ ( i_mono_2Etyop_2Emin_2Ebool @ ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ V0_2E0 ) ) ) )
= ( s @ tyop_2Emin_2Ebool @ V0_2E0 ) ) ).

thf(ij_2Emono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29,axiom,
! [V0_2E0: u] :
( ( s @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ tyop_2Emin_2Ebool ) @ ( i_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29 @ ( j_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29 @ ( s @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ tyop_2Emin_2Ebool ) @ V0_2E0 ) ) ) )
= ( s @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ tyop_2Emin_2Ebool ) @ V0_2E0 ) ) ).

thf(ij_2Emono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29_29,axiom,
! [V0_2E0: u] :
( ( s @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ tyop_2Emin_2Ebool ) ) @ ( i_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29_29 @ ( j_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29_29 @ ( s @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ tyop_2Emin_2Ebool ) ) @ V0_2E0 ) ) ) )
= ( s @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ tyop_2Emin_2Ebool ) ) @ V0_2E0 ) ) ).

thf(ji_2Emono_2Etyop_2Emin_2Ebool,axiom,
! [V0: \$o] :
( ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( i_mono_2Etyop_2Emin_2Ebool @ V0 ) ) )
= V0 ) ).

thf(ji_2Emono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29,axiom,
! [V0: \$o > \$o] :
( ( j_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29 @ ( s @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ tyop_2Emin_2Ebool ) @ ( i_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29 @ V0 ) ) )
= V0 ) ).

thf(ji_2Emono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29_29,axiom,
! [V0: \$o > \$o > \$o] :
( ( j_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29_29 @ ( s @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ tyop_2Emin_2Ebool ) ) @ ( i_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29_29 @ V0 ) ) )
= V0 ) ).

thf(arityeq1_2Ec_2Ebool_2E_21_2E1_2Emono_2EA_27a,axiom,
! [A_27a: d,X0_2E0: u] :
( ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( c_2Ebool_2E_21_2E1 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ X0_2E0 ) ) ) )
= ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ tyop_2Emin_2Ebool ) @ c_2Ebool_2E_21_2E0 ) @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ X0_2E0 ) ) ) ) ) ).

thf(arityeq2_2Ec_2Emin_2E_3D_2E2_2Emono_2EA_27a,axiom,
! [A_27a: d,X0_2E0: u,X1_2E0: u] :
( ( ( s @ A_27a @ X0_2E0 )
= ( s @ A_27a @ X1_2E0 ) )
<=> ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) ) @ c_2Emin_2E_3D_2E0 ) @ ( s @ A_27a @ X0_2E0 ) ) ) @ ( s @ A_27a @ X1_2E0 ) ) ) ) ) ).

thf(arityeq1_2Ec_2Ebool_2E_3F_2E1_2Emono_2EA_27a,axiom,
! [A_27a: d,X0_2E0: u] :
( ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( c_2Ebool_2E_3F_2E1 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ X0_2E0 ) ) ) )
= ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ tyop_2Emin_2Ebool ) @ c_2Ebool_2E_3F_2E0 ) @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ X0_2E0 ) ) ) ) ) ).

thf(arityeq1_2Ec_2Epred__set_2ECHOICE_2E1_2Emono_2EA_27a,axiom,
! [A_27a: d,X0_2E0: u] :
( ( s @ A_27a @ ( c_2Epred__set_2ECHOICE_2E1 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ X0_2E0 ) ) )
= ( s @ A_27a @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ A_27a ) @ c_2Epred__set_2ECHOICE_2E0 ) @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ X0_2E0 ) ) ) ) ).

thf(arityeq2_2Ec_2Epred__set_2EDELETE_2E2_2Emono_2EA_27a,axiom,
! [A_27a: d,X0_2E0: u,X1_2E0: u] :
( ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ ( c_2Epred__set_2EDELETE_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ X0_2E0 ) @ ( s @ A_27a @ X1_2E0 ) ) )
= ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) ) @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ ( tyop_2Emin_2Efun @ A_27a @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) ) ) @ c_2Epred__set_2EDELETE_2E0 ) @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ X0_2E0 ) ) ) @ ( s @ A_27a @ X1_2E0 ) ) ) ) ).

thf(arityeq2_2Ec_2Ebool_2EIN_2E2_2Emono_2EA_27a,axiom,
! [A_27a: d,X0_2E0: u,X1_2E0: u] :
( ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( c_2Ebool_2EIN_2E2 @ ( s @ A_27a @ X0_2E0 ) @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ X1_2E0 ) ) ) )
= ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ tyop_2Emin_2Ebool ) @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ ( tyop_2Emin_2Efun @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ tyop_2Emin_2Ebool ) ) @ c_2Ebool_2EIN_2E0 ) @ ( s @ A_27a @ X0_2E0 ) ) ) @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ X1_2E0 ) ) ) ) ) ).

thf(arityeq1_2Ec_2Epred__set_2EREST_2E1_2Emono_2EA_27a,axiom,
! [A_27a: d,X0_2E0: u] :
( ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ ( c_2Epred__set_2EREST_2E1 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ X0_2E0 ) ) )
= ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) ) @ c_2Epred__set_2EREST_2E0 ) @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ X0_2E0 ) ) ) ) ).

thf(arityeq2_2Ec_2Epred__set_2ESUBSET_2E2_2Emono_2EA_27a,axiom,
! [A_27a: d,X0_2E0: u,X1_2E0: u] :
( ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( c_2Epred__set_2ESUBSET_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ X0_2E0 ) @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ X1_2E0 ) ) ) )
= ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ tyop_2Emin_2Ebool ) @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ ( tyop_2Emin_2Efun @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ tyop_2Emin_2Ebool ) ) @ c_2Epred__set_2ESUBSET_2E0 ) @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ X0_2E0 ) ) ) @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ X1_2E0 ) ) ) ) ) ).

thf(monoeq_2Emono_2Eapp_2E2_2Emono_2Etyop_2Emin_2Ebool_20mono_2Etyop_2Emin_2Ebool,axiom,
! [V0: \$o > \$o,V1: \$o] :
( ( s @ tyop_2Emin_2Ebool @ ( i_mono_2Etyop_2Emin_2Ebool @ ( V0 @ V1 ) ) )
= ( s @ tyop_2Emin_2Ebool @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ tyop_2Emin_2Ebool ) @ ( i_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29 @ V0 ) ) @ ( s @ tyop_2Emin_2Ebool @ ( i_mono_2Etyop_2Emin_2Ebool @ V1 ) ) ) ) ) ).

thf(monoeq_2Emono_2Eapp_2E2_2Emono_2Etyop_2Emin_2Ebool_20mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29,axiom,
! [V0: \$o > \$o > \$o,V1: \$o] :
( ( s @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ tyop_2Emin_2Ebool ) @ ( i_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29 @ ( V0 @ V1 ) ) )
= ( s @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ tyop_2Emin_2Ebool ) @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ tyop_2Emin_2Ebool ) ) @ ( i_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29_29 @ V0 ) ) @ ( s @ tyop_2Emin_2Ebool @ ( i_mono_2Etyop_2Emin_2Ebool @ V1 ) ) ) ) ) ).

thf(monoapp_2Emono_2Eapp_2Emono_2Etyop_2Emin_2Ebool_20mono_2Etyop_2Emin_2Ebool,axiom,
! [V0: \$o > \$o,V1: \$o] :
( ( V0 @ V1 )
= ( V0 @ V1 ) ) ).

thf(monoapp_2Emono_2Eapp_2Emono_2Etyop_2Emin_2Ebool_20mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29,axiom,
! [V0: \$o > \$o > \$o,V1: \$o] :
( ( V0 @ V1 )
= ( V0 @ V1 ) ) ).

thf(thm_2Epred__set_2ESUBSET__DEF,axiom,
! [A_27a: d,V0s_2E0: u,V1t_2E0: u] :
( ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( c_2Epred__set_2ESUBSET_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ V0s_2E0 ) @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ V1t_2E0 ) ) ) )
<=> ! [V2x_2E0: u] :
( ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( c_2Ebool_2EIN_2E2 @ ( s @ A_27a @ V2x_2E0 ) @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ V0s_2E0 ) ) ) )
=> ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( c_2Ebool_2EIN_2E2 @ ( s @ A_27a @ V2x_2E0 ) @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ V1t_2E0 ) ) ) ) ) ) ).

thf(thm_2Epred__set_2EIN__DELETE,axiom,
! [A_27a: d,V0s_2E0: u,V1x_2E0: u,V2y_2E0: u] :
( ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( c_2Ebool_2EIN_2E2 @ ( s @ A_27a @ V1x_2E0 ) @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ ( c_2Epred__set_2EDELETE_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ V0s_2E0 ) @ ( s @ A_27a @ V2y_2E0 ) ) ) ) ) )
<=> ( ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( c_2Ebool_2EIN_2E2 @ ( s @ A_27a @ V1x_2E0 ) @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ V0s_2E0 ) ) ) )
& ( (~)
@ ( ( s @ A_27a @ V1x_2E0 )
= ( s @ A_27a @ V2y_2E0 ) ) ) ) ) ).

thf(thm_2Epred__set_2EREST__DEF,axiom,
! [A_27a: d,V0s_2E0: u] :
( ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ ( c_2Epred__set_2EREST_2E1 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ V0s_2E0 ) ) )
= ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ ( c_2Epred__set_2EDELETE_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ V0s_2E0 ) @ ( s @ A_27a @ ( c_2Epred__set_2ECHOICE_2E1 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ V0s_2E0 ) ) ) ) ) ) ).

thf(thm_2Epred__set_2EREST__SUBSET,conjecture,
! [A_27a: d,V0s_2E0: u] : ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( c_2Epred__set_2ESUBSET_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ ( c_2Epred__set_2EREST_2E1 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ V0s_2E0 ) ) ) @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ V0s_2E0 ) ) ) ) ).

%------------------------------------------------------------------------------
```