TPTP Problem File: KRS067+1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : KRS067+1 : TPTP v8.1.0. Released v3.1.0.
% Domain   : Knowledge Representation (Semantic Web)
% Problem  : DL Test: fact1.1
% Version  : Especial.
% English  : If a, b and c are disjoint, then:
%                (a and b) or (b and c) or (c and a)
%            is unsatisfiable.

% Refs     : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
%          : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source   : [Bec03]
% Names    : inconsistent_description-logic-Manifest001 [Bec03]

% Status   : Unsatisfiable
% Rating   : 0.00 v3.1.0
% Syntax   : Number of formulae    :    6 (   1 unt;   0 def)
%            Number of atoms       :   17 (   0 equ)
%            Maximal formula atoms :    7 (   2 avg)
%            Number of connectives :   15 (   4   ~;   3   |;   4   &)
%                                         (   2 <=>;   2  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    6 (   4 avg)
%            Maximal term depth    :    1 (   1 avg)
%            Number of predicates  :    8 (   8 usr;   0 prp; 1-1 aty)
%            Number of functors    :    1 (   1 usr;   1 con; 0-0 aty)
%            Number of variables   :    5 (   5   !;   0   ?)
% SPC      : FOF_UNS_EPR_NEQ

% Comments : Sean Bechhofer says there are some errors in the encoding of
%            datatypes, so this problem may not be perfect. At least it's
%            still representative of the type of reasoning required for OWL.
%------------------------------------------------------------------------------
%----Thing and Nothing
fof(axiom_0,axiom,
    ! [X] :
      ( cowlThing(X)
      & ~ cowlNothing(X) ) ).

%----String and Integer disjoint
fof(axiom_1,axiom,
    ! [X] :
      ( xsd_string(X)
    <=> ~ xsd_integer(X) ) ).

%----Equality cUnsatisfiable
fof(axiom_2,axiom,
    ! [X] :
      ( cUnsatisfiable(X)
    <=> ( ( cc(X)
          & cb(X) )
        | ( cb(X)
          & ca(X) )
        | ( cc(X)
          & ca(X) ) ) ) ).

%----Super ca
fof(axiom_3,axiom,
    ! [X] :
      ( ca(X)
     => ~ ( cc(X)
          | cb(X) ) ) ).

%----Super cb
fof(axiom_4,axiom,
    ! [X] :
      ( cb(X)
     => ~ cc(X) ) ).

%----i2003_11_14_17_18_1956
fof(axiom_5,axiom,
    cUnsatisfiable(i2003_11_14_17_18_1956) ).

%------------------------------------------------------------------------------