## TPTP Problem File: KRS090+1.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : KRS090+1 : TPTP v8.1.0. Released v3.1.0.
% Domain   : Knowledge Representation (Semantic Web)
% Problem  : A pattern comes up a lot in more complex ontologies
% Version  : Especial.
% English  : This kind of pattern comes up a lot in more complex ontologies.
%            Failure to cope with this kind of pattern is one of the reasons
%            that many reasoners have been unable to cope with such ontologies.

% Refs     : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
%          : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source   : [Bec03]
% Names    : inconsistent_description-logic-Manifest040 [Bec03]

% Status   : Unsatisfiable
% Rating   : 0.00 v6.4.0, 0.25 v6.3.0, 0.00 v3.1.0
% Syntax   : Number of formulae    :    9 (   1 unt;   0 def)
%            Number of atoms       :   90 (   0 equ)
%            Maximal formula atoms :   65 (  10 avg)
%            Number of connectives :   87 (   6   ~;  36   |;  37   &)
%                                         (   1 <=>;   7  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   35 (   8 avg)
%            Maximal term depth    :    1 (   1 avg)
%            Number of predicates  :   77 (  77 usr;   0 prp; 1-2 aty)
%            Number of functors    :    1 (   1 usr;   1 con; 0-0 aty)
%            Number of variables   :   10 (   9   !;   1   ?)
% SPC      : FOF_UNS_RFO_NEQ

% Comments : Sean Bechhofer says there are some errors in the encoding of
%            datatypes, so this problem may not be perfect. At least it's
%            still representative of the type of reasoning required for OWL.
%------------------------------------------------------------------------------
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).

%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).

%----Super cC1
fof(axiom_2,axiom,
! [X] :
( cC1(X)
=> ( ( cB5(X)
| cA5(X) )
& ( cB13(X)
| cA13(X) )
& ( cA1(X)
| cB1(X) )
& ( cA27(X)
| cB27(X) )
& ( cA4(X)
| cB4(X) )
& ( cB12(X)
| cA12(X) )
& ( cB30(X)
| cA30(X) )
& ( cA20(X)
| cB20(X) )
& ( cB14(X)
| cA14(X) )
& ( cB28(X)
| cA28(X) )
& ( cA3(X)
| cB3(X) )
& ( cB7(X)
| cA7(X) )
& ( cB21(X)
| cA21(X) )
& ( cB22(X)
| cA22(X) )
& ( cB17(X)
| cA17(X) )
& ( cB11(X)
| cA11(X) )
& ( cB19(X)
| cA19(X) )
& ( cA8(X)
| cB8(X) )
& ( cA26(X)
| cB26(X) )
& ( cA25(X)
| cB25(X) )
& ( cA29(X)
| cB29(X) )
& ( cB23(X)
| cA23(X) )
& ( cB18(X)
| cA18(X) )
& ( cB10(X)
| cA10(X) )
& ( cB2(X)
| cA2(X) )
& ( cA16(X)
| cB16(X) )
& ( cB0(X)
| cA0(X) )
& ( cB31(X)
| cA31(X) )
& ( cB9(X)
| cA9(X) )
& ( cB6(X)
| cA6(X) )
& ( cB24(X)
| cA24(X) )
& ( cB15(X)
| cA15(X) ) ) ) ).

%----Super cC2
fof(axiom_3,axiom,
! [X] :
( cC2(X)
=> ( ( ~ cB(X)
| cA(X) )
& ( cB(X)
| cA(X) ) ) ) ).

%----Super cC3
fof(axiom_4,axiom,
! [X] :
( cC3(X)
=> ( ( ~ cB(X)
| ~ cA(X) )
& ( cB(X)
| ~ cA(X) ) ) ) ).

%----Super cC4
fof(axiom_5,axiom,
! [X] :
( cC4(X)
=> ? [Y] :
( rR(X,Y)
& cC2(Y) ) ) ).

%----Super cC5
fof(axiom_6,axiom,
! [X] :
( cC5(X)
=> ! [Y] :
( rR(X,Y)
=> cC3(Y) ) ) ).

%----Super cTEST
fof(axiom_7,axiom,
! [X] :
( cTEST(X)
=> ( cC4(X)
& cC1(X)
& cC5(X) ) ) ).

%----i2003_11_14_17_19_57994
fof(axiom_8,axiom,
cTEST(i2003_11_14_17_19_57994) ).

%------------------------------------------------------------------------------
```