## TPTP Problem File: KRS134+1.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : KRS134+1 : TPTP v8.1.0. Released v3.1.0.
% Domain   : Knowledge Representation (Semantic Web)
% Problem  : This is a typical definition of range from description logic
% Version  : Especial.
% English  :

% Refs     : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
%          : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source   : [Bec03]
% Names    : positive_I5.24-Manifest003 [Bec03]

% Status   : Theorem
% Rating   : 0.00 v5.3.0, 0.09 v5.2.0, 0.00 v3.1.0
% Syntax   : Number of formulae    :    4 (   0 unt;   0 def)
%            Number of atoms       :   13 (   0 equ)
%            Maximal formula atoms :    7 (   3 avg)
%            Number of connectives :   13 (   4   ~;   0   |;   4   &)
%                                         (   2 <=>;   3  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    7 (   5 avg)
%            Maximal term depth    :    1 (   1 avg)
%            Number of predicates  :    6 (   6 usr;   0 prp; 1-2 aty)
%            Number of functors    :    0 (   0 usr;   0 con; --- aty)
%            Number of variables   :    8 (   8   !;   0   ?)
% SPC      : FOF_THM_EPR_NEQ

% Comments : Sean Bechhofer says there are some errors in the encoding of
%            datatypes, so this problem may not be perfect. At least it's
%            still representative of the type of reasoning required for OWL.
%------------------------------------------------------------------------------
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).

%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).

%----Range: rprop
fof(axiom_2,axiom,
! [X,Y] :
( rprop(X,Y)
=> cA(Y) ) ).

%----Thing and Nothing
%----String and Integer disjoint
%----Super cowlThing
fof(the_axiom,conjecture,
( ! [X] :
( cowlThing(X)
& ~ cowlNothing(X) )
& ! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) )
& ! [X] :
( cowlThing(X)
=> ! [Y] :
( rprop(X,Y)
=> cA(Y) ) ) ) ).

%------------------------------------------------------------------------------
```