TPTP Problem File: LCL257-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL257-1 : TPTP v8.1.2. Released v2.0.0.
% Domain : Logic Calculi (Equivalential)
% Problem : XHN depends on YQL
% Version : [TPTP] axioms.
% English : Show that XHN can be derived from the single Lukasiewicz
% axiom YQL.
% Refs : [MW92] McCune & Wos (1992), Experiments in Automated Deductio
% : [McC92] McCune (1992), Email to G. Sutcliffe
% : [Wos95] Wos (1995), Searching for Circles of Pure Proofs
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.00 v5.4.0, 0.06 v5.3.0, 0.10 v5.2.0, 0.08 v5.1.0, 0.06 v5.0.0, 0.07 v4.0.1, 0.00 v2.1.0
% Syntax : Number of clauses : 3 ( 2 unt; 0 nHn; 2 RR)
% Number of literals : 5 ( 0 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 4 ( 4 usr; 3 con; 0-2 aty)
% Number of variables : 5 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments : This completes the loop of single axioms' dependence in
% problems LCL010 to LCL021.
% : Thought to be LCLunsatisfiable.
%--------------------------------------------------------------------------
cnf(condensed_detachment,axiom,
( ~ is_a_theorem(equivalent(X,Y))
| ~ is_a_theorem(X)
| is_a_theorem(Y) ) ).
%----Axiom by Lukasiewicz
cnf(yql,axiom,
is_a_theorem(equivalent(equivalent(X,Y),equivalent(equivalent(Z,Y),equivalent(X,Z)))) ).
%----Axiom of symmetry
cnf(prove_xhn,negated_conjecture,
~ is_a_theorem(equivalent(x,equivalent(equivalent(y,z),equivalent(equivalent(z,x),y)))) ).
%--------------------------------------------------------------------------