## TPTP Problem File: LCL441-2.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : LCL441-2 : TPTP v8.1.0. Released v3.2.0.
% Domain   : Logic Calculi (Propositional)
% Problem  : Problem about propositional logic
% Version  : [Pau06] axioms : Reduced > Especial.
% English  :

% Refs     : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source   : [Pau06]
% Names    :

% Status   : Unsatisfiable
% Rating   : 0.00 v5.4.0, 0.06 v5.3.0, 0.10 v5.2.0, 0.00 v3.2.0
% Syntax   : Number of clauses     :    3 (   1 unt;   0 nHn;   2 RR)
%            Number of literals    :    5 (   0 equ;   3 neg)
%            Maximal clause size   :    2 (   1 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :    1 (   1 usr;   0 prp; 3-3 aty)
%            Number of functors    :    9 (   9 usr;   4 con; 0-3 aty)
%            Number of variables   :    6 (   1 sgn)
% SPC      : CNF_UNS_RFO_NEQ_HRN

% Comments : The problems in the [Pau06] collection each have very many axioms,
%            of which only a small selection are required for the refutation.
%            The mission is to find those few axioms, after which a refutation
%            can be quite easily found. This version has only the necessary
%            axioms.
%------------------------------------------------------------------------------
cnf(cls_conjecture_3,negated_conjecture,
( ~ c_in(c_PropLog_Opl_Oop_A_N_62(c_PropLog_Opl_Ovar(v_a,t_a),c_PropLog_Opl_Ofalse,t_a),c_PropLog_Othms(c_insert(c_PropLog_Opl_Oop_A_N_62(c_PropLog_Opl_Ovar(v_a,t_a),c_PropLog_Opl_Ofalse,t_a),c_emptyset,tc_PropLog_Opl(t_a)),t_a),tc_PropLog_Opl(t_a))
| ~ c_in(c_PropLog_Opl_Ovar(v_a,t_a),c_PropLog_Othms(c_insert(c_PropLog_Opl_Ovar(v_a,t_a),c_emptyset,tc_PropLog_Opl(t_a)),t_a),tc_PropLog_Opl(t_a)) ) ).

cnf(cls_PropLog_Othms_OH_0,axiom,
( ~ c_in(V_p,V_H,tc_PropLog_Opl(T_a))
| c_in(V_p,c_PropLog_Othms(V_H,T_a),tc_PropLog_Opl(T_a)) ) ).

cnf(cls_Set_OinsertCI_1,axiom,
c_in(V_x,c_insert(V_x,V_B,T_a),T_a) ).

%------------------------------------------------------------------------------
```