TPTP Problem File: MGT041+2.p

View Solutions - Solve Problem

%--------------------------------------------------------------------------
% File     : MGT041+2 : TPTP v8.1.0. Released v2.0.0.
% Domain   : Management (Organisation Theory)
% Problem  : There are non-FM and non-EP organisations
% Version  : [PM93] axioms.
% English  : There are non-first mover and non-efficient producers
%            organisations.

% Refs     : [PM93]  Peli & Masuch (1993), The Logic of Propogation Strateg
%          : [PM94]  Peli & Masuch (1994), The Logic of Propogation Strateg
%          : [Kam95] Kamps (1995), Email to G. Sutcliffe
% Source   : [PM93]
% Names    : Theorem 10 [PM93]

% Status   : Theorem
% Rating   : 0.00 v5.3.0, 0.09 v5.2.0, 0.00 v3.2.0, 0.11 v3.1.0, 0.00 v2.5.0, 0.33 v2.4.0, 0.33 v2.2.1, 0.00 v2.1.0
% Syntax   : Number of formulae    :    5 (   0 unt;   0 def)
%            Number of atoms       :   17 (   0 equ)
%            Maximal formula atoms :    4 (   3 avg)
%            Number of connectives :   16 (   4   ~;   0   |;  10   &)
%                                         (   0 <=>;   2  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    7 (   6 avg)
%            Maximal term depth    :    1 (   1 avg)
%            Number of predicates  :    6 (   6 usr;   0 prp; 1-3 aty)
%            Number of functors    :    2 (   2 usr;   2 con; 0-0 aty)
%            Number of variables   :   10 (   6   !;   4   ?)
% SPC      : FOF_THM_EPR_NEQ

% Comments :
%--------------------------------------------------------------------------
%----MP. The number of routines cannot be low and high at the same time.
fof(mp_not_high_and_low,axiom,
    ! [X,T] :
      ~ ( number_of_routines(X,T,low)
        & number_of_routines(X,T,high) ) ).

%----A14. Efficient producer organizations have elaborated routines at
%----their founding.
fof(a14,hypothesis,
    ! [X,T] :
      ( ( organisation_at_time(X,T)
        & efficient_producer(X)
        & founding_time(X,T) )
     => has_elaborated_routines(X,T) ) ).

%----A15. First mover organizations have only a few routines at their
%----founding.
fof(a15,hypothesis,
    ! [X,T] :
      ( ( organisation_at_time(X,T)
        & first_mover(X)
        & founding_time(X,T) )
     => number_of_routines(X,T,low) ) ).

%----A16. Some organizations come to birth with several, but poorly
%----elaborated routines are not elaborated.
fof(a16,hypothesis,
    ? [X,T] :
      ( organisation_at_time(X,T)
      & founding_time(X,T)
      & number_of_routines(X,T,high)
      & ~ has_elaborated_routines(X,T) ) ).

%----GOAL: T10. There are are non-first movers and non-efficient producer
%----organizations.
fof(prove_t10,conjecture,
    ? [X,T] :
      ( organisation_at_time(X,T)
      & ~ first_mover(X)
      & ~ efficient_producer(X) ) ).

%--------------------------------------------------------------------------