TPTP Problem File: NLP147+1.p

View Solutions - Solve Problem

```%--------------------------------------------------------------------------
% File     : NLP147+1 : TPTP v8.1.2. Released v2.4.0.
% Domain   : Natural Language Processing
% Problem  : An old dirty white Chevy, problem 34
% Version  : [Bos00b] axioms.
% English  : Eliminating inconsistent interpretations in the statement
%            "An old dirty white chevy barrels down a lonely street in
%            hollywood. Two young fellas are in the front seat."

% Refs     : [Bos00a] Bos (2000), DORIS: Discourse Oriented Representation a
%            [Bos00b] Bos (2000), Applied Theorem Proving - Natural Language
% Source   : [Bos00b]
% Names    : doris124 [Bos00b]

% Status   : Theorem
% Rating   : 0.11 v8.1.0, 0.19 v7.5.0, 0.22 v7.4.0, 0.10 v7.3.0, 0.17 v7.1.0, 0.09 v7.0.0, 0.07 v6.4.0, 0.12 v6.3.0, 0.08 v6.2.0, 0.12 v6.1.0, 0.20 v6.0.0, 0.13 v5.5.0, 0.19 v5.4.0, 0.21 v5.3.0, 0.30 v5.2.0, 0.10 v5.0.0, 0.17 v4.1.0, 0.22 v4.0.0, 0.21 v3.7.0, 0.00 v3.2.0, 0.11 v3.1.0, 0.00 v2.4.0
% Syntax   : Number of formulae    :   62 (   1 unt;   0 def)
%            Number of atoms       :  157 (   5 equ)
%            Maximal formula atoms :   27 (   2 avg)
%            Number of connectives :  108 (  13   ~;   1   |;  31   &)
%                                         (   1 <=>;  62  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   33 (   5 avg)
%            Maximal term depth    :    1 (   1 avg)
%            Number of predicates  :   60 (  59 usr;   0 prp; 1-4 aty)
%            Number of functors    :    0 (   0 usr;   0 con; --- aty)
%            Number of variables   :  139 ( 127   !;  12   ?)
% SPC      : FOF_THM_RFO_SEQ

%--------------------------------------------------------------------------
fof(ax1,axiom,
! [U,V] :
( furniture(U,V)
=> instrumentality(U,V) ) ).

fof(ax2,axiom,
! [U,V] :
( seat(U,V)
=> furniture(U,V) ) ).

fof(ax3,axiom,
! [U,V] :
( frontseat(U,V)
=> seat(U,V) ) ).

fof(ax4,axiom,
! [U,V] :
( location(U,V)
=> object(U,V) ) ).

fof(ax5,axiom,
! [U,V] :
( city(U,V)
=> location(U,V) ) ).

fof(ax6,axiom,
! [U,V] :
( hollywood_placename(U,V)
=> placename(U,V) ) ).

fof(ax7,axiom,
! [U,V] :
( abstraction(U,V)
=> unisex(U,V) ) ).

fof(ax8,axiom,
! [U,V] :
( abstraction(U,V)
=> general(U,V) ) ).

fof(ax9,axiom,
! [U,V] :
( abstraction(U,V)
=> nonhuman(U,V) ) ).

fof(ax10,axiom,
! [U,V] :
( abstraction(U,V)
=> thing(U,V) ) ).

fof(ax11,axiom,
! [U,V] :
( relation(U,V)
=> abstraction(U,V) ) ).

fof(ax12,axiom,
! [U,V] :
( relname(U,V)
=> relation(U,V) ) ).

fof(ax13,axiom,
! [U,V] :
( placename(U,V)
=> relname(U,V) ) ).

fof(ax14,axiom,
! [U,V] :
( way(U,V)
=> artifact(U,V) ) ).

fof(ax15,axiom,
! [U,V] :
( street(U,V)
=> way(U,V) ) ).

fof(ax16,axiom,
! [U,V] :
( object(U,V)
=> unisex(U,V) ) ).

fof(ax17,axiom,
! [U,V] :
( object(U,V)
=> impartial(U,V) ) ).

fof(ax18,axiom,
! [U,V] :
( object(U,V)
=> nonliving(U,V) ) ).

fof(ax19,axiom,
! [U,V] :
( object(U,V)
=> entity(U,V) ) ).

fof(ax20,axiom,
! [U,V] :
( artifact(U,V)
=> object(U,V) ) ).

fof(ax21,axiom,
! [U,V] :
( instrumentality(U,V)
=> artifact(U,V) ) ).

fof(ax22,axiom,
! [U,V] :
( transport(U,V)
=> instrumentality(U,V) ) ).

fof(ax23,axiom,
! [U,V] :
( vehicle(U,V)
=> transport(U,V) ) ).

fof(ax24,axiom,
! [U,V] :
( car(U,V)
=> vehicle(U,V) ) ).

fof(ax25,axiom,
! [U,V] :
( chevy(U,V)
=> car(U,V) ) ).

fof(ax26,axiom,
! [U,V] :
( barrel(U,V)
=> event(U,V) ) ).

fof(ax27,axiom,
! [U,V] :
( event(U,V)
=> eventuality(U,V) ) ).

fof(ax28,axiom,
! [U,V] :
( state(U,V)
=> event(U,V) ) ).

fof(ax29,axiom,
! [U,V] :
( eventuality(U,V)
=> unisex(U,V) ) ).

fof(ax30,axiom,
! [U,V] :
( eventuality(U,V)
=> nonexistent(U,V) ) ).

fof(ax31,axiom,
! [U,V] :
( eventuality(U,V)
=> specific(U,V) ) ).

fof(ax32,axiom,
! [U,V] :
( eventuality(U,V)
=> thing(U,V) ) ).

fof(ax33,axiom,
! [U,V] :
( state(U,V)
=> eventuality(U,V) ) ).

fof(ax34,axiom,
! [U,V] :
( two(U,V)
=> group(U,V) ) ).

fof(ax35,axiom,
! [U,V] :
( set(U,V)
=> multiple(U,V) ) ).

fof(ax36,axiom,
! [U,V] :
( group(U,V)
=> set(U,V) ) ).

fof(ax37,axiom,
! [U,V] :
( man(U,V)
=> male(U,V) ) ).

fof(ax38,axiom,
! [U,V] :
( human_person(U,V)
=> animate(U,V) ) ).

fof(ax39,axiom,
! [U,V] :
( human_person(U,V)
=> human(U,V) ) ).

fof(ax40,axiom,
! [U,V] :
( organism(U,V)
=> living(U,V) ) ).

fof(ax41,axiom,
! [U,V] :
( organism(U,V)
=> impartial(U,V) ) ).

fof(ax42,axiom,
! [U,V] :
( entity(U,V)
=> existent(U,V) ) ).

fof(ax43,axiom,
! [U,V] :
( entity(U,V)
=> specific(U,V) ) ).

fof(ax44,axiom,
! [U,V] :
( thing(U,V)
=> singleton(U,V) ) ).

fof(ax45,axiom,
! [U,V] :
( entity(U,V)
=> thing(U,V) ) ).

fof(ax46,axiom,
! [U,V] :
( organism(U,V)
=> entity(U,V) ) ).

fof(ax47,axiom,
! [U,V] :
( human_person(U,V)
=> organism(U,V) ) ).

fof(ax48,axiom,
! [U,V] :
( man(U,V)
=> human_person(U,V) ) ).

fof(ax49,axiom,
! [U,V] :
( fellow(U,V)
=> man(U,V) ) ).

fof(ax50,axiom,
! [U,V] :
( animate(U,V)
=> ~ nonliving(U,V) ) ).

fof(ax51,axiom,
! [U,V] :
( existent(U,V)
=> ~ nonexistent(U,V) ) ).

fof(ax52,axiom,
! [U,V] :
( nonhuman(U,V)
=> ~ human(U,V) ) ).

fof(ax53,axiom,
! [U,V] :
( nonliving(U,V)
=> ~ living(U,V) ) ).

fof(ax54,axiom,
! [U,V] :
( singleton(U,V)
=> ~ multiple(U,V) ) ).

fof(ax55,axiom,
! [U,V] :
( specific(U,V)
=> ~ general(U,V) ) ).

fof(ax56,axiom,
! [U,V] :
( unisex(U,V)
=> ~ male(U,V) ) ).

fof(ax57,axiom,
! [U,V] :
( young(U,V)
=> ~ old(U,V) ) ).

fof(ax58,axiom,
! [U,V,W] :
( ( entity(U,V)
& placename(U,W)
& of(U,W,V) )
=> ~ ? [X] :
( placename(U,X)
& X != W
& of(U,X,V) ) ) ).

fof(ax59,axiom,
! [U,V,W,X] :
( be(U,V,W,X)
=> W = X ) ).

fof(ax60,axiom,
! [U,V] :
( two(U,V)
<=> ? [W] :
( member(U,W,V)
& ? [X] :
( member(U,X,V)
& X != W
& ! [Y] :
( member(U,Y,V)
=> ( Y = X
| Y = W ) ) ) ) ) ).

fof(ax61,axiom,
! [U] :
~ ? [V] : member(U,V,V) ).

fof(co1,conjecture,
~ ? [U] :
( actual_world(U)
& ? [V,W,X,Y,Z] :
( street(U,V)
& lonely(U,V)
& of(U,W,X)
& city(U,X)
& hollywood_placename(U,W)
& placename(U,W)
& chevy(U,X)
& white(U,X)
& dirty(U,X)
& old(U,X)
& event(U,Y)
& agent(U,Y,X)
& present(U,Y)
& barrel(U,Y)
& down(U,Y,V)
& in(U,Y,X)
& ! [X1] :
( member(U,X1,Z)
=> ? [X2,X3] :
( frontseat(U,X3)
& state(U,X2)
& be(U,X2,X1,X3)
& in(U,X3,X3) ) )
& two(U,Z)
& group(U,Z)
& ! [X4] :
( member(U,X4,Z)
=> ( fellow(U,X4)
& young(U,X4) ) ) ) ) ).

%--------------------------------------------------------------------------
```