## TPTP Problem File: SET915+1.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : SET915+1 : TPTP v8.1.0. Released v3.2.0.
% Domain   : Set theory
% Problem  : ~ in(A,B) => disjoint(singleton(A),B)
% Version  : [Urb06] axioms : Especial.
% English  :

% Refs     : [Byl90] Bylinski (1990), Some Basic Properties of Sets
%          : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source   : [Urb06]
% Names    : zfmisc_1__t56_zfmisc_1 [Urb06]

% Status   : Theorem
% Rating   : 0.00 v5.3.0, 0.09 v5.2.0, 0.00 v3.2.0
% Syntax   : Number of formulae    :    6 (   2 unt;   0 def)
%            Number of atoms       :   10 (   0 equ)
%            Maximal formula atoms :    2 (   1 avg)
%            Number of connectives :    8 (   4   ~;   0   |;   0   &)
%                                         (   0 <=>;   4  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    5 (   4 avg)
%            Maximal term depth    :    2 (   1 avg)
%            Number of predicates  :    3 (   3 usr;   0 prp; 1-2 aty)
%            Number of functors    :    1 (   1 usr;   0 con; 1-1 aty)
%            Number of variables   :   10 (   8   !;   2   ?)
% SPC      : FOF_THM_RFO_NEQ

% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
%            library, www.mizar.org
%------------------------------------------------------------------------------
fof(symmetry_r1_xboole_0,axiom,
! [A,B] :
( disjoint(A,B)
=> disjoint(B,A) ) ).

fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).

fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).

fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).

fof(t56_zfmisc_1,conjecture,
! [A,B] :
( ~ in(A,B)
=> disjoint(singleton(A),B) ) ).

fof(l28_zfmisc_1,axiom,
! [A,B] :
( ~ in(A,B)
=> disjoint(singleton(A),B) ) ).

%------------------------------------------------------------------------------
```