## TPTP Problem File: SWC222+1.p

View Solutions - Solve Problem

```%--------------------------------------------------------------------------
% File     : SWC222+1 : TPTP v8.1.2. Released v2.4.0.
% Domain   : Software Creation
% Problem  : cond_pst_pivoted1_x_pst_pivoted3
% Version  : [Wei00] axioms.
% English  : Find components in a software library that match a given target
%            specification given in first-order logic. The components are
%            specified in first-order logic as well. The problem represents
%            a test of one library module specification against a target
%            specification.

% Refs     : [Wei00] Weidenbach (2000), Software Reuse of List Functions Ve
%          : [FSS98] Fischer et al. (1998), Deduction-Based Software Compon
% Source   : [Wei00]
% Names    : cond_pst_pivoted1_x_pst_pivoted3 [Wei00]

% Status   : Theorem
% Rating   : 0.69 v8.1.0, 0.78 v7.4.0, 0.73 v7.3.0, 0.76 v7.1.0, 0.74 v7.0.0, 0.77 v6.3.0, 0.75 v6.2.0, 0.76 v6.1.0, 0.80 v6.0.0, 0.78 v5.5.0, 0.81 v5.4.0, 0.82 v5.3.0, 0.89 v5.2.0, 0.80 v5.1.0, 0.81 v5.0.0, 0.83 v4.1.0, 0.87 v4.0.1, 0.91 v4.0.0, 0.92 v3.7.0, 0.85 v3.5.0, 0.84 v3.3.0, 0.79 v3.2.0, 0.82 v3.1.0, 0.89 v2.7.0, 0.83 v2.4.0
% Syntax   : Number of formulae    :   96 (   9 unt;   0 def)
%            Number of atoms       :  420 (  77 equ)
%            Maximal formula atoms :   26 (   4 avg)
%            Number of connectives :  359 (  35   ~;  19   |;  47   &)
%                                         (  26 <=>; 232  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   26 (   7 avg)
%            Maximal term depth    :    4 (   1 avg)
%            Number of predicates  :   20 (  19 usr;   0 prp; 1-2 aty)
%            Number of functors    :    5 (   5 usr;   1 con; 0-2 aty)
%            Number of variables   :  215 ( 198   !;  17   ?)
% SPC      : FOF_THM_RFO_SEQ

%--------------------------------------------------------------------------
%----Include list specification axioms
include('Axioms/SWC001+0.ax').
%--------------------------------------------------------------------------
fof(co1,conjecture,
! [U] :
( ssList(U)
=> ! [V] :
( ssList(V)
=> ! [W] :
( ssList(W)
=> ! [X] :
( ~ ssList(X)
| V != X
| U != W
| nil = U
| ? [Y] :
( ssItem(Y)
& ? [Z] :
( ssList(Z)
& ? [X1] :
( ssList(X1)
& app(app(Z,cons(Y,nil)),X1) = U
& ! [X2] :
( ~ ssItem(X2)
| ~ memberP(Z,X2)
| ~ memberP(X1,X2)
| ~ leq(Y,X2)
| leq(X2,Y) ) ) ) )
| ( nil != W
& ! [X3] :
( ssItem(X3)
=> ! [X4] :
( ssList(X4)
=> ! [X5] :
( ~ ssList(X5)
| app(app(X4,cons(X3,nil)),X5) != W
| ? [X6] :
( ssItem(X6)
& ~ leq(X3,X6)
& memberP(X4,X6)
& memberP(X5,X6)
& lt(X3,X6) ) ) ) ) ) ) ) ) ) ).

%--------------------------------------------------------------------------
```