## TPTP Problem File: SYN010-1.005.005.p

View Solutions - Solve Problem

```%--------------------------------------------------------------------------
% File     : SYN010-1.005.005 : TPTP v8.1.0. Released v1.0.0.
% Domain   : Syntactic
% Problem  : Example for Proposition 5.2 in [LMG94]
% Version  : Biased.
% English  : Example to show that connection tableaux with factorization
%            cannot polynomially simulate simulate connection tableaux with
%            folding up.

% Refs     : [LMG94] Letz et al. (1994), Controlled Integration of the Cut
% Source   : [LMG94]
% Names    : Example 5.1 [LMG94]

% Status   : Unsatisfiable
% Rating   : 0.00 v2.1.0
% Syntax   : Number of clauses     :   27 (   6 unt;   0 nHn;  27 RR)
%            Number of literals    :  132 (   0 equ; 106 neg)
%            Maximal clause size   :    6 (   4 avg)
%            Maximal term depth    :    0 (   0 avg)
%            Number of predicates  :   26 (  26 usr;  26 prp; 0-0 aty)
%            Number of functors    :    0 (   0 usr;   0 con; --- aty)
%            Number of variables   :    0 (   0 sgn)
% SPC      : CNF_UNS_PRP

% Comments : Biased towards folding up.
%          : tptp2X: -f tptp -s5:5 SYN010-1.g
%--------------------------------------------------------------------------
cnf(clause_1,negated_conjecture,
~ p_0 ).

cnf(clause_2,negated_conjecture,
( p_0
| ~ p_1_1
| ~ p_1_2
| ~ p_1_3
| ~ p_1_4
| ~ p_1_5 ) ).

cnf(clause_3,negated_conjecture,
( p_1_1
| ~ p_2_1
| ~ p_2_2
| ~ p_2_3
| ~ p_2_4
| ~ p_2_5 ) ).

cnf(clause_4,negated_conjecture,
( p_1_2
| ~ p_2_1
| ~ p_2_2
| ~ p_2_3
| ~ p_2_4
| ~ p_2_5 ) ).

cnf(clause_5,negated_conjecture,
( p_1_3
| ~ p_2_1
| ~ p_2_2
| ~ p_2_3
| ~ p_2_4
| ~ p_2_5 ) ).

cnf(clause_6,negated_conjecture,
( p_1_4
| ~ p_2_1
| ~ p_2_2
| ~ p_2_3
| ~ p_2_4
| ~ p_2_5 ) ).

cnf(clause_7,negated_conjecture,
( p_1_5
| ~ p_2_1
| ~ p_2_2
| ~ p_2_3
| ~ p_2_4
| ~ p_2_5 ) ).

cnf(clause_8,negated_conjecture,
( p_2_1
| ~ p_3_1
| ~ p_3_2
| ~ p_3_3
| ~ p_3_4
| ~ p_3_5 ) ).

cnf(clause_9,negated_conjecture,
( p_2_2
| ~ p_3_1
| ~ p_3_2
| ~ p_3_3
| ~ p_3_4
| ~ p_3_5 ) ).

cnf(clause_10,negated_conjecture,
( p_2_3
| ~ p_3_1
| ~ p_3_2
| ~ p_3_3
| ~ p_3_4
| ~ p_3_5 ) ).

cnf(clause_11,negated_conjecture,
( p_2_4
| ~ p_3_1
| ~ p_3_2
| ~ p_3_3
| ~ p_3_4
| ~ p_3_5 ) ).

cnf(clause_12,negated_conjecture,
( p_2_5
| ~ p_3_1
| ~ p_3_2
| ~ p_3_3
| ~ p_3_4
| ~ p_3_5 ) ).

cnf(clause_13,negated_conjecture,
( p_3_1
| ~ p_4_1
| ~ p_4_2
| ~ p_4_3
| ~ p_4_4
| ~ p_4_5 ) ).

cnf(clause_14,negated_conjecture,
( p_3_2
| ~ p_4_1
| ~ p_4_2
| ~ p_4_3
| ~ p_4_4
| ~ p_4_5 ) ).

cnf(clause_15,negated_conjecture,
( p_3_3
| ~ p_4_1
| ~ p_4_2
| ~ p_4_3
| ~ p_4_4
| ~ p_4_5 ) ).

cnf(clause_16,negated_conjecture,
( p_3_4
| ~ p_4_1
| ~ p_4_2
| ~ p_4_3
| ~ p_4_4
| ~ p_4_5 ) ).

cnf(clause_17,negated_conjecture,
( p_3_5
| ~ p_4_1
| ~ p_4_2
| ~ p_4_3
| ~ p_4_4
| ~ p_4_5 ) ).

cnf(clause_18,negated_conjecture,
( p_4_1
| ~ p_5_1
| ~ p_5_2
| ~ p_5_3
| ~ p_5_4
| ~ p_5_5 ) ).

cnf(clause_19,negated_conjecture,
( p_4_2
| ~ p_5_1
| ~ p_5_2
| ~ p_5_3
| ~ p_5_4
| ~ p_5_5 ) ).

cnf(clause_20,negated_conjecture,
( p_4_3
| ~ p_5_1
| ~ p_5_2
| ~ p_5_3
| ~ p_5_4
| ~ p_5_5 ) ).

cnf(clause_21,negated_conjecture,
( p_4_4
| ~ p_5_1
| ~ p_5_2
| ~ p_5_3
| ~ p_5_4
| ~ p_5_5 ) ).

cnf(clause_22,negated_conjecture,
( p_4_5
| ~ p_5_1
| ~ p_5_2
| ~ p_5_3
| ~ p_5_4
| ~ p_5_5 ) ).

cnf(clause_23,negated_conjecture,
p_5_1 ).

cnf(clause_24,negated_conjecture,
p_5_2 ).

cnf(clause_25,negated_conjecture,
p_5_3 ).

cnf(clause_26,negated_conjecture,
p_5_4 ).

cnf(clause_27,negated_conjecture,
p_5_5 ).

%--------------------------------------------------------------------------
```