TPTP Problem File: SYN092-1.003.p

View Solutions - Solve Problem

%--------------------------------------------------------------------------
% File     : SYN092-1.003 : TPTP v8.1.0. Bugfixed v1.2.1.
% Domain   : Syntactic
% Problem  : Plaisted problem sym(s(3,3))
% Version  : Biased.
% English  :

% Refs     : [Pla94] Plaisted (1994), The Search Efficiency of Theorem Prov
% Source   : [Pla94]
% Names    : Sym(S3n) [Pla94]

% Status   : Satisfiable
% Rating   : 0.00 v2.1.0
% Syntax   : Number of clauses     :   42 (   0 unt;  17 nHn;  42 RR)
%            Number of literals    :  116 (   0 equ;  58 neg)
%            Maximal clause size   :    3 (   2 avg)
%            Maximal term depth    :    0 (   0 avg)
%            Number of predicates  :   28 (  28 usr;  28 prp; 0-0 aty)
%            Number of functors    :    0 (   0 usr;   0 con; --- aty)
%            Number of variables   :    0 (   0 sgn)
% SPC      : CNF_SAT_PRP

% Comments : Biased away from various calculi.
%          : tptp2X: -f tptp -s3 SYN092-1.g
% Bugfixes : v1.2.1 - Bugfix in SYN087-1.
%--------------------------------------------------------------------------
cnf(s3_goal_1,negated_conjecture,
    ( ~ p_0
    | ~ q_0 ) ).

cnf(s3_type11_1,axiom,
    ( p_0
    | ~ p_1
    | ~ p_2 ) ).

cnf(s3_type11_2,axiom,
    ( p_0
    | ~ q_1
    | ~ q_2 ) ).

cnf(s3_type11_3,axiom,
    ( p_1
    | ~ p_2
    | ~ p_3 ) ).

cnf(s3_type11_4,axiom,
    ( p_1
    | ~ q_2
    | ~ q_3 ) ).

cnf(s3_type11_5,axiom,
    ( p_2
    | ~ p_3
    | ~ p_4 ) ).

cnf(s3_type11_6,axiom,
    ( p_2
    | ~ q_3
    | ~ q_4 ) ).

cnf(s3_type11_7,axiom,
    ( p_3
    | ~ p_4
    | ~ p_5 ) ).

cnf(s3_type11_8,axiom,
    ( p_3
    | ~ q_4
    | ~ q_5 ) ).

cnf(s3_type12_1,axiom,
    ( q_0
    | ~ p_1
    | ~ q_2 ) ).

cnf(s3_type12_2,axiom,
    ( q_0
    | ~ q_1
    | ~ p_2 ) ).

cnf(s3_type12_3,axiom,
    ( q_1
    | ~ p_2
    | ~ q_3 ) ).

cnf(s3_type12_4,axiom,
    ( q_1
    | ~ q_2
    | ~ p_3 ) ).

cnf(s3_type12_5,axiom,
    ( q_2
    | ~ p_3
    | ~ q_4 ) ).

cnf(s3_type12_6,axiom,
    ( q_2
    | ~ q_3
    | ~ p_4 ) ).

cnf(s3_type12_7,axiom,
    ( q_3
    | ~ p_4
    | ~ q_5 ) ).

cnf(s3_type12_8,axiom,
    ( q_3
    | ~ q_4
    | ~ p_5 ) ).

cnf(s3_type2_1,axiom,
    ( p_5
    | ~ p_2 ) ).

cnf(s3_type2_2,axiom,
    ( p_6
    | ~ p_3 ) ).

cnf(s3_type2_3,axiom,
    ( q_5
    | ~ q_2 ) ).

cnf(s3_type2_4,axiom,
    ( q_6
    | ~ q_3 ) ).

cnf(sym_s3_goal_1,axiom,
    ( sym_p_0
    | sym_q_0 ) ).

cnf(sym_s3_type11_1,axiom,
    ( ~ sym_p_0
    | sym_p_1
    | sym_p_2 ) ).

cnf(sym_s3_type11_2,axiom,
    ( ~ sym_p_0
    | sym_q_1
    | sym_q_2 ) ).

cnf(sym_s3_type11_3,axiom,
    ( ~ sym_p_1
    | sym_p_2
    | sym_p_3 ) ).

cnf(sym_s3_type11_4,axiom,
    ( ~ sym_p_1
    | sym_q_2
    | sym_q_3 ) ).

cnf(sym_s3_type11_5,axiom,
    ( ~ sym_p_2
    | sym_p_3
    | sym_p_4 ) ).

cnf(sym_s3_type11_6,axiom,
    ( ~ sym_p_2
    | sym_q_3
    | sym_q_4 ) ).

cnf(sym_s3_type11_7,axiom,
    ( ~ sym_p_3
    | sym_p_4
    | sym_p_5 ) ).

cnf(sym_s3_type11_8,axiom,
    ( ~ sym_p_3
    | sym_q_4
    | sym_q_5 ) ).

cnf(sym_s3_type12_1,axiom,
    ( ~ sym_q_0
    | sym_p_1
    | sym_q_2 ) ).

cnf(sym_s3_type12_2,axiom,
    ( ~ sym_q_0
    | sym_q_1
    | sym_p_2 ) ).

cnf(sym_s3_type12_3,axiom,
    ( ~ sym_q_1
    | sym_p_2
    | sym_q_3 ) ).

cnf(sym_s3_type12_4,axiom,
    ( ~ sym_q_1
    | sym_q_2
    | sym_p_3 ) ).

cnf(sym_s3_type12_5,axiom,
    ( ~ sym_q_2
    | sym_p_3
    | sym_q_4 ) ).

cnf(sym_s3_type12_6,axiom,
    ( ~ sym_q_2
    | sym_q_3
    | sym_p_4 ) ).

cnf(sym_s3_type12_7,axiom,
    ( ~ sym_q_3
    | sym_p_4
    | sym_q_5 ) ).

cnf(sym_s3_type12_8,axiom,
    ( ~ sym_q_3
    | sym_q_4
    | sym_p_5 ) ).

cnf(sym_s3_type2_1,axiom,
    ( ~ sym_p_5
    | sym_p_2 ) ).

cnf(sym_s3_type2_2,axiom,
    ( ~ sym_p_6
    | sym_p_3 ) ).

cnf(sym_s3_type2_3,axiom,
    ( ~ sym_q_5
    | sym_q_2 ) ).

cnf(sym_s3_type2_4,axiom,
    ( ~ sym_q_6
    | sym_q_3 ) ).

%--------------------------------------------------------------------------