TPTP Problem File: SYN528+1.p

View Solutions - Solve Problem

```%--------------------------------------------------------------------------
% File     : SYN528+1 : TPTP v8.1.0. Released v2.1.0.
% Domain   : Syntactic (Translated)
% Problem  : ALC, N=5, R=1, L=25, K=3, D=2, P=0, Index=029
% Version  : Especial.
% English  :

% Refs     : [OS95]  Ohlbach & Schmidt (1995), Functional Translation and S
%          : [HS97]  Hustadt & Schmidt (1997), On Evaluating Decision Proce
%          : [Wei97] Weidenbach (1997), Email to G. Sutcliffe
% Source   : [Wei97]
% Names    : alc-5-1-25-3-2-029.dfg [Wei97]

% Status   : CounterSatisfiable
% Rating   : 0.00 v4.1.0, 0.17 v4.0.1, 0.00 v2.7.0, 0.17 v2.6.0, 0.00 v2.4.0, 0.00 v2.1.0
% Syntax   : Number of formulae    :    1 (   0 unt;   0 def)
%            Number of atoms       :  219 (   0 equ)
%            Maximal formula atoms :  219 ( 219 avg)
%            Number of connectives :  302 (  84   ~;  77   |; 115   &)
%                                         (   0 <=>;  26  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   29 (  29 avg)
%            Maximal term depth    :    1 (   1 avg)
%            Number of predicates  :   17 (  17 usr;   6 prp; 0-2 aty)
%            Number of functors    :   37 (  37 usr;  37 con; 0-0 aty)
%            Number of variables   :   26 (  26   !;   0   ?)
% SPC      : FOF_CSA_EPR_NEQ

% Comments : These ALC problems have been translated from propositional
%            multi-modal K logic formulae generated according to the scheme
%            described in [HS97], using the optimized functional translation
%            described in [OS95]. The finite model property holds, the
%            Herbrand Universe is finite, they are decidable (the complexity
%            is PSPACE-complete), resolution + subsumption + condensing is a
%            decision procedure, and the translated formulae belong to the
%            (CNF-translation of the) Bernays-Schoenfinkel class [Wei97].
%--------------------------------------------------------------------------
fof(co1,conjecture,
~ ( ( ( ndr1_0
& ~ c4_1(a277)
& c2_1(a277) )
| c5_0
| ~ c1_0 )
& ( ~ c2_0
| ! [U] :
( ndr1_0
=> ( ! [V] :
( ndr1_1(U)
=> ( ~ c4_2(U,V)
| ~ c5_2(U,V) ) )
| ( ndr1_1(U)
& ~ c2_2(U,a278)
& ~ c5_2(U,a278)
& ~ c4_2(U,a278) )
| ! [W] :
( ndr1_1(U)
=> ( ~ c1_2(U,W)
| c2_2(U,W) ) ) ) )
| ! [X] :
( ndr1_0
=> ( ~ c2_1(X)
| ( ndr1_1(X)
& ~ c3_2(X,a279)
& c4_2(X,a279) ) ) ) )
& ( c5_0
| ! [Y] :
( ndr1_0
=> ( ( ndr1_1(Y)
& c4_2(Y,a280)
& c5_2(Y,a280) )
| ! [Z] :
( ndr1_1(Y)
=> ( c3_2(Y,Z)
| c5_2(Y,Z)
| ~ c1_2(Y,Z) ) )
| ~ c5_1(Y) ) )
| ~ c3_0 )
& ( ! [X1] :
( ndr1_0
=> ( ~ c1_1(X1)
| ! [X2] :
( ndr1_1(X1)
=> ( ~ c4_2(X1,X2)
| ~ c2_2(X1,X2) ) )
| ~ c4_1(X1) ) )
| ( ndr1_0
& ndr1_1(a281)
& ~ c2_2(a281,a282)
& ~ c5_2(a281,a282)
& c3_2(a281,a282)
& c5_1(a281)
& ~ c4_1(a281) ) )
& ( c5_0
| ! [X3] :
( ndr1_0
=> ( ( ndr1_1(X3)
& ~ c2_2(X3,a283)
& ~ c4_2(X3,a283) )
| ( ndr1_1(X3)
& ~ c3_2(X3,a284)
& ~ c1_2(X3,a284)
& c4_2(X3,a284) )
| ( ndr1_1(X3)
& c1_2(X3,a285)
& c3_2(X3,a285)
& ~ c2_2(X3,a285) ) ) )
| ( ndr1_0
& ~ c2_1(a286)
& ndr1_1(a286)
& ~ c1_2(a286,a287)
& ~ c4_2(a286,a287)
& ! [X4] :
( ndr1_1(a286)
=> ( c5_2(a286,X4)
| c2_2(a286,X4) ) ) ) )
& ( c3_0
| ~ c5_0
| ( ndr1_0
& ~ c1_1(a288)
& ! [X5] :
( ndr1_1(a288)
=> ( c1_2(a288,X5)
| c4_2(a288,X5)
| c2_2(a288,X5) ) ) ) )
& ( ! [X6] :
( ndr1_0
=> ( ( ndr1_1(X6)
& ~ c2_2(X6,a289)
& c4_2(X6,a289)
& ~ c5_2(X6,a289) )
| ( ndr1_1(X6)
& ~ c4_2(X6,a290)
& ~ c5_2(X6,a290) ) ) )
| c1_0 )
& ( ! [X7] :
( ndr1_0
=> ( ! [X8] :
( ndr1_1(X7)
=> ( ~ c4_2(X7,X8)
| c5_2(X7,X8) ) )
| ~ c5_1(X7)
| ~ c2_1(X7) ) )
| ~ c1_0
| ! [X9] :
( ndr1_0
=> ( ~ c2_1(X9)
| ( ndr1_1(X9)
& c1_2(X9,a291)
& ~ c2_2(X9,a291)
& ~ c5_2(X9,a291) ) ) ) )
& ( ~ c3_0
| ( ndr1_0
& ~ c3_1(a292)
& ! [X10] :
( ndr1_1(a292)
=> ( c2_2(a292,X10)
| ~ c5_2(a292,X10)
| ~ c3_2(a292,X10) ) )
& ! [X11] :
( ndr1_1(a292)
=> ( c3_2(a292,X11)
| ~ c2_2(a292,X11)
| c4_2(a292,X11) ) ) )
| ! [X12] :
( ndr1_0
=> ( c1_1(X12)
| ~ c4_1(X12)
| c3_1(X12) ) ) )
& ( c3_0
| c4_0
| c1_0 )
& ( c4_0
| ( ndr1_0
& c2_1(a293)
& c5_1(a293) )
| ~ c2_0 )
& ( ( ndr1_0
& ~ c1_1(a294)
& ~ c4_1(a294)
& c3_1(a294) )
| ( ndr1_0
& ~ c2_1(a295)
& ! [X13] :
( ndr1_1(a295)
=> ( c4_2(a295,X13)
| c5_2(a295,X13) ) )
& ~ c1_1(a295) )
| ( ndr1_0
& c4_1(a296)
& c3_1(a296) ) )
& ( c3_0
| ( ndr1_0
& ndr1_1(a297)
& ~ c1_2(a297,a298)
& c2_2(a297,a298)
& c3_2(a297,a298)
& ndr1_1(a297)
& ~ c2_2(a297,a299)
& ~ c3_2(a297,a299)
& ~ c4_2(a297,a299)
& c2_1(a297) )
| ~ c1_0 )
& ( ! [X14] :
( ndr1_0
=> ( c4_1(X14)
| c1_1(X14)
| ! [X15] :
( ndr1_1(X14)
=> ( ~ c1_2(X14,X15)
| ~ c2_2(X14,X15) ) ) ) )
| ~ c4_0
| ( ndr1_0
& c5_1(a300)
& ndr1_1(a300)
& ~ c1_2(a300,a301)
& ~ c3_2(a300,a301)
& ~ c4_2(a300,a301) ) )
& ( ~ c4_0
| ( ndr1_0
& c5_1(a302)
& ! [X16] :
( ndr1_1(a302)
=> ( ~ c2_2(a302,X16)
| ~ c5_2(a302,X16) ) )
& c2_1(a302) )
| c1_0 )
& ( ! [X17] :
( ndr1_0
=> ( ~ c5_1(X17)
| ~ c2_1(X17)
| ( ndr1_1(X17)
& c4_2(X17,a303)
& c2_2(X17,a303)
& ~ c5_2(X17,a303) ) ) )
| ( ndr1_0
& ! [X18] :
( ndr1_1(a304)
=> ( ~ c5_2(a304,X18)
| ~ c4_2(a304,X18)
| c1_2(a304,X18) ) )
& c5_1(a304) )
| ~ c5_0 )
& ( ! [X19] :
( ndr1_0
=> ( ( ndr1_1(X19)
& c5_2(X19,a305)
& c3_2(X19,a305)
& c4_2(X19,a305) )
| ~ c4_1(X19)
| ( ndr1_1(X19)
& c4_2(X19,a306)
& ~ c2_2(X19,a306) ) ) )
| ~ c3_0 )
& ( c4_0
| ( ndr1_0
& ~ c3_1(a307)
& ndr1_1(a307)
& c5_2(a307,a308)
& c3_2(a307,a308)
& c4_2(a307,a308)
& ~ c5_1(a307) )
| ( ndr1_0
& ndr1_1(a309)
& c3_2(a309,a310)
& ~ c2_2(a309,a310)
& c2_1(a309)
& c3_1(a309) ) )
& ( ( ndr1_0
& ! [X20] :
( ndr1_1(a311)
=> ( c5_2(a311,X20)
| ~ c2_2(a311,X20) ) )
& c2_1(a311)
& ~ c3_1(a311) )
| c4_0
| ~ c5_0 )
& ( c4_0
| ( ndr1_0
& c4_1(a312)
& ~ c3_1(a312) )
| ( ndr1_0
& c3_1(a313)
& c5_1(a313) ) ) ) ).

%--------------------------------------------------------------------------
```