TSTP Solution File: GRP125-1.003 by CSE---1.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CSE---1.5
% Problem  : GRP125-1.003 : TPTP v8.1.0. Released v1.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : java -jar /export/starexec/sandbox/solver/bin/mcs_scs.jar %d %s

% Computer : n005.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Fri Sep 16 20:48:47 EDT 2022

% Result   : Unsatisfiable 0.60s 0.69s
% Output   : CNFRefutation 0.60s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : GRP125-1.003 : TPTP v8.1.0. Released v1.2.0.
% 0.07/0.13  % Command  : java -jar /export/starexec/sandbox/solver/bin/mcs_scs.jar %d %s
% 0.13/0.34  % Computer : n005.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Wed Aug 31 14:56:33 EDT 2022
% 0.13/0.34  % CPUTime    : 
% 0.45/0.62  start to proof:theBenchmark
% 0.60/0.68  %-------------------------------------------
% 0.60/0.68  % File        :CSE---1.5
% 0.60/0.68  % Problem     :theBenchmark
% 0.60/0.68  % Transform   :cnf
% 0.60/0.68  % Format      :tptp:raw
% 0.60/0.68  % Command     :java -jar mcs_scs.jar %d %s
% 0.60/0.68  
% 0.60/0.68  % Result      :Theorem 0.010000s
% 0.60/0.68  % Output      :CNFRefutation 0.010000s
% 0.60/0.68  %-------------------------------------------
% 0.60/0.69  %--------------------------------------------------------------------------
% 0.60/0.69  % File     : GRP125-1.003 : TPTP v8.1.0. Released v1.2.0.
% 0.60/0.69  % Domain   : Group Theory (Quasigroups)
% 0.60/0.69  % Problem  : (a.b).(b.a) = a
% 0.60/0.69  % Version  : [Sla93] axioms.
% 0.60/0.69  % English  : Generate the multiplication table for the specified quasi-
% 0.60/0.69  %            group with 3 elements.
% 0.60/0.69  
% 0.60/0.69  % Refs     : [FSB93] Fujita et al. (1993), Automatic Generation of Some Res
% 0.60/0.69  %          : [Sla93] Slaney (1993), Email to G. Sutcliffe
% 0.60/0.69  %          : [SFS95] Slaney et al. (1995), Automated Reasoning and Exhausti
% 0.60/0.69  % Source   : [Sla93]
% 0.60/0.69  % Names    : QG3 [Sla93]
% 0.60/0.69  %          : QG3 [FSB93]
% 0.60/0.69  %          : QG3 [SFS95]
% 0.60/0.69  %          : Bennett QG3 [TPTP]
% 0.60/0.69  
% 0.60/0.69  % Status   : Unsatisfiable
% 0.60/0.69  % Rating   : 0.00 v2.1.0
% 0.60/0.69  % Syntax   : Number of clauses     :   15 (  10 unt;   1 nHn;  14 RR)
% 0.60/0.69  %            Number of literals    :   27 (   0 equ;  16 neg)
% 0.60/0.69  %            Maximal clause size   :    5 (   1 avg)
% 0.60/0.69  %            Maximal term depth    :    1 (   1 avg)
% 0.60/0.69  %            Number of predicates  :    3 (   3 usr;   0 prp; 1-3 aty)
% 0.60/0.69  %            Number of functors    :    3 (   3 usr;   3 con; 0-0 aty)
% 0.60/0.69  %            Number of variables   :   19 (   0 sgn)
% 0.60/0.69  % SPC      : CNF_UNS_EPR_NEQ_NHN
% 0.60/0.69  
% 0.60/0.69  % Comments : [SFS93]'s axiomatization has been modified for this.
% 0.60/0.69  %          : Substitution axioms are not needed, as any positive equality
% 0.60/0.69  %            literals should resolve on negative ones directly.
% 0.60/0.69  %          : tptp2X: -f tptp -s3 GRP125-1.g
% 0.60/0.69  %--------------------------------------------------------------------------
% 0.60/0.69  cnf(element_1,axiom,
% 0.60/0.69      group_element(e_1) ).
% 0.60/0.69  
% 0.60/0.69  cnf(element_2,axiom,
% 0.60/0.69      group_element(e_2) ).
% 0.60/0.69  
% 0.60/0.69  cnf(element_3,axiom,
% 0.60/0.69      group_element(e_3) ).
% 0.60/0.69  
% 0.60/0.69  cnf(e_1_is_not_e_2,axiom,
% 0.60/0.69      ~ equalish(e_1,e_2) ).
% 0.60/0.69  
% 0.60/0.69  cnf(e_1_is_not_e_3,axiom,
% 0.60/0.69      ~ equalish(e_1,e_3) ).
% 0.60/0.69  
% 0.60/0.69  cnf(e_2_is_not_e_1,axiom,
% 0.60/0.69      ~ equalish(e_2,e_1) ).
% 0.60/0.69  
% 0.60/0.69  cnf(e_2_is_not_e_3,axiom,
% 0.60/0.69      ~ equalish(e_2,e_3) ).
% 0.60/0.69  
% 0.60/0.69  cnf(e_3_is_not_e_1,axiom,
% 0.60/0.69      ~ equalish(e_3,e_1) ).
% 0.60/0.69  
% 0.60/0.69  cnf(e_3_is_not_e_2,axiom,
% 0.60/0.69      ~ equalish(e_3,e_2) ).
% 0.60/0.69  
% 0.60/0.69  cnf(product_total_function1,axiom,
% 0.60/0.69      ( ~ group_element(X)
% 0.60/0.69      | ~ group_element(Y)
% 0.60/0.69      | product(X,Y,e_1)
% 0.60/0.69      | product(X,Y,e_2)
% 0.60/0.69      | product(X,Y,e_3) ) ).
% 0.60/0.69  
% 0.60/0.69  cnf(product_total_function2,axiom,
% 0.60/0.69      ( ~ product(X,Y,W)
% 0.60/0.69      | ~ product(X,Y,Z)
% 0.60/0.69      | equalish(W,Z) ) ).
% 0.60/0.69  
% 0.60/0.69  cnf(product_right_cancellation,axiom,
% 0.60/0.69      ( ~ product(X,W,Y)
% 0.60/0.69      | ~ product(X,Z,Y)
% 0.60/0.69      | equalish(W,Z) ) ).
% 0.60/0.69  
% 0.60/0.69  cnf(product_left_cancellation,axiom,
% 0.60/0.69      ( ~ product(W,Y,X)
% 0.60/0.69      | ~ product(Z,Y,X)
% 0.60/0.69      | equalish(W,Z) ) ).
% 0.60/0.69  
% 0.60/0.69  cnf(product_idempotence,axiom,
% 0.60/0.69      product(X,X,X) ).
% 0.60/0.69  
% 0.60/0.69  cnf(qg3,negated_conjecture,
% 0.60/0.69      ( ~ product(X,Y,Z1)
% 0.60/0.69      | ~ product(Y,X,Z2)
% 0.60/0.69      | product(Z1,Z2,X) ) ).
% 0.60/0.69  
% 0.60/0.69  %--------------------------------------------------------------------------
% 0.60/0.69  %-------------------------------------------
% 0.60/0.69  % Proof found
% 0.60/0.69  % SZS status Theorem for theBenchmark
% 0.60/0.69  % SZS output start Proof
% 0.60/0.69  %ClaNum:15(EqnAxiom:0)
% 0.60/0.69  %VarNum:44(SingletonVarNum:19)
% 0.60/0.69  %MaxLitNum:5
% 0.60/0.69  %MaxfuncDepth:0
% 0.60/0.69  %SharedTerms:12
% 0.60/0.69  %goalClause: 15
% 0.60/0.69  [1]P1(a1)
% 0.60/0.69  [2]P1(a2)
% 0.60/0.69  [3]P1(a3)
% 0.60/0.69  [5]~P2(a1,a2)
% 0.60/0.69  [6]~P2(a1,a3)
% 0.60/0.69  [7]~P2(a2,a1)
% 0.60/0.69  [8]~P2(a2,a3)
% 0.60/0.69  [9]~P2(a3,a1)
% 0.60/0.69  [10]~P2(a3,a2)
% 0.60/0.69  [4]P3(x41,x41,x41)
% 0.60/0.69  [12]~P3(x123,x124,x121)+P2(x121,x122)+~P3(x123,x124,x122)
% 0.60/0.69  [13]~P3(x133,x131,x134)+P2(x131,x132)+~P3(x133,x132,x134)
% 0.60/0.69  [14]~P3(x141,x143,x144)+P2(x141,x142)+~P3(x142,x143,x144)
% 0.60/0.69  [15]~P3(x153,x154,x151)+P3(x151,x152,x153)+~P3(x154,x153,x152)
% 0.60/0.69  [11]~P1(x112)+~P1(x111)+P3(x111,x112,a2)+P3(x111,x112,a3)+P3(x111,x112,a1)
% 0.60/0.69  %EqnAxiom
% 0.60/0.69  
% 0.60/0.69  %-------------------------------------------
% 0.60/0.69  cnf(18,plain,
% 0.60/0.69     (~P3(a1,a2,a1)),
% 0.60/0.69     inference(scs_inference,[],[4,5,14,13])).
% 0.60/0.69  cnf(19,plain,
% 0.60/0.69     (P3(x191,x191,x191)),
% 0.60/0.69     inference(rename_variables,[],[4])).
% 0.60/0.69  cnf(24,plain,
% 0.60/0.69     (~P3(x241,a2,a1)+~P3(a2,x241,a1)),
% 0.60/0.69     inference(scs_inference,[],[4,19,5,14,13,12,15])).
% 0.60/0.69  cnf(29,plain,
% 0.60/0.69     (P3(x291,x291,x291)),
% 0.60/0.69     inference(rename_variables,[],[4])).
% 0.60/0.69  cnf(32,plain,
% 0.60/0.70     (P3(x321,x321,x321)),
% 0.60/0.70     inference(rename_variables,[],[4])).
% 0.60/0.70  cnf(37,plain,
% 0.60/0.70     (P3(a3,a1,a2)),
% 0.60/0.70     inference(scs_inference,[],[1,3,6,4,29,32,14,12,13,11])).
% 0.60/0.70  cnf(39,plain,
% 0.60/0.70     (~P3(a1,a3,x391)+P3(a2,x391,a3)),
% 0.60/0.70     inference(scs_inference,[],[1,3,6,4,29,32,14,12,13,11,15])).
% 0.60/0.70  cnf(56,plain,
% 0.60/0.70     (~P3(a1,a3,a1)),
% 0.60/0.70     inference(scs_inference,[],[2,8,18,3,4,37,14,13,11,15])).
% 0.60/0.70  cnf(61,plain,
% 0.60/0.70     (P3(x611,x611,x611)),
% 0.60/0.70     inference(rename_variables,[],[4])).
% 0.60/0.70  cnf(72,plain,
% 0.60/0.70     ($false),
% 0.60/0.70     inference(scs_inference,[],[3,9,8,4,61,56,37,1,12,14,11,15,13,39,24]),
% 0.60/0.70     ['proof']).
% 0.60/0.70  % SZS output end Proof
% 0.60/0.70  % Total time :0.010000s
%------------------------------------------------------------------------------