## TSTP Solution File: LCL666+1.001 by SInE---0.4

View Problem - Process Solution

```%------------------------------------------------------------------------------
% File     : SInE---0.4
% Problem  : LCL666+1.001 : TPTP v5.0.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : Source/sine.py -e eprover -t %d %s

% Computer : art11.cs.miami.edu
% Model    : i686 i686
% CPU      : Intel(R) Pentium(R) 4 CPU 3.00GHz @ 3000MHz
% Memory   : 2006MB
% OS       : Linux 2.6.31.5-127.fc12.i686.PAE
% CPULimit : 300s
% DateTime : Sat Dec 25 19:55:08 EST 2010

% Result   : Theorem 0.20s
% Output   : CNFRefutation 0.20s
% Verified :
% SZS Type : Refutation
%            Derivation depth      :   12
%            Number of leaves      :    2
% Syntax   : Number of formulae    :   18 (   7 unt;   0 def)
%            Number of atoms       :   51 (   0 equ)
%            Maximal formula atoms :    5 (   2 avg)
%            Number of connectives :   71 (  38   ~;  19   |;  14   &)
%                                         (   0 <=>;   0  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   11 (   4 avg)
%            Maximal term depth    :    1 (   1 avg)
%            Number of predicates  :    4 (   3 usr;   1 prp; 0-2 aty)
%            Number of functors    :    1 (   1 usr;   1 con; 0-0 aty)
%            Number of variables   :   16 (   0 sgn   9   !;   5   ?)

%------------------------------------------------------------------------------
fof(1,conjecture,
~ ? [X1] :
~ ( ~ ! [X2] :
( ~ r1(X1,X2)
| ~ ( p201(X2)
& p101(X2) ) )
| ~ ( p201(X1)
& p101(X1) ) ),
file('/tmp/tmpTz4XLU/sel_LCL666+1.001.p_1',main) ).

fof(2,axiom,
! [X1] : r1(X1,X1),
file('/tmp/tmpTz4XLU/sel_LCL666+1.001.p_1',reflexivity) ).

fof(3,negated_conjecture,
~ ~ ? [X1] :
~ ( ~ ! [X2] :
( ~ r1(X1,X2)
| ~ ( p201(X2)
& p101(X2) ) )
| ~ ( p201(X1)
& p101(X1) ) ),
inference(assume_negation,[status(cth)],[1]) ).

fof(4,negated_conjecture,
~ ~ ? [X1] :
~ ( ~ ! [X2] :
( ~ r1(X1,X2)
| ~ ( p201(X2)
& p101(X2) ) )
| ~ ( p201(X1)
& p101(X1) ) ),
inference(fof_simplification,[status(thm)],[3,theory(equality)]) ).

fof(5,negated_conjecture,
? [X1] :
( ! [X2] :
( ~ r1(X1,X2)
| ~ p201(X2)
| ~ p101(X2) )
& p201(X1)
& p101(X1) ),
inference(fof_nnf,[status(thm)],[4]) ).

fof(6,negated_conjecture,
? [X3] :
( ! [X4] :
( ~ r1(X3,X4)
| ~ p201(X4)
| ~ p101(X4) )
& p201(X3)
& p101(X3) ),
inference(variable_rename,[status(thm)],[5]) ).

fof(7,negated_conjecture,
( ! [X4] :
( ~ r1(esk1_0,X4)
| ~ p201(X4)
| ~ p101(X4) )
& p201(esk1_0)
& p101(esk1_0) ),
inference(skolemize,[status(esa)],[6]) ).

fof(8,negated_conjecture,
! [X4] :
( ( ~ r1(esk1_0,X4)
| ~ p201(X4)
| ~ p101(X4) )
& p201(esk1_0)
& p101(esk1_0) ),
inference(shift_quantors,[status(thm)],[7]) ).

cnf(9,negated_conjecture,
p101(esk1_0),
inference(split_conjunct,[status(thm)],[8]) ).

cnf(10,negated_conjecture,
p201(esk1_0),
inference(split_conjunct,[status(thm)],[8]) ).

cnf(11,negated_conjecture,
( ~ p101(X1)
| ~ p201(X1)
| ~ r1(esk1_0,X1) ),
inference(split_conjunct,[status(thm)],[8]) ).

fof(12,plain,
! [X2] : r1(X2,X2),
inference(variable_rename,[status(thm)],[2]) ).

cnf(13,plain,
r1(X1,X1),
inference(split_conjunct,[status(thm)],[12]) ).

cnf(14,negated_conjecture,
( ~ p101(esk1_0)
| ~ p201(esk1_0) ),
inference(spm,[status(thm)],[11,13,theory(equality)]) ).

cnf(15,negated_conjecture,
( \$false
| ~ p201(esk1_0) ),
inference(rw,[status(thm)],[14,9,theory(equality)]) ).

cnf(16,negated_conjecture,
( \$false
| \$false ),
inference(rw,[status(thm)],[15,10,theory(equality)]) ).

cnf(17,negated_conjecture,
\$false,
inference(cn,[status(thm)],[16,theory(equality)]) ).

cnf(18,negated_conjecture,
\$false,
17,
[proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% /home/graph/tptp/Systems/SInE---0.4/Source/sine.py:10: DeprecationWarning: the sets module is deprecated
%   from sets import Set
% % SZS status Started for /home/graph/tptp/TPTP/Problems/LCL/LCL666+1.001.p
% --creating new selector for []
% -running prover on /tmp/tmpTz4XLU/sel_LCL666+1.001.p_1 with time limit 29
% -prover status Theorem
% Problem LCL666+1.001.p solved in phase 0.
% % SZS status Theorem for /home/graph/tptp/TPTP/Problems/LCL/LCL666+1.001.p
% % SZS status Ended for /home/graph/tptp/TPTP/Problems/LCL/LCL666+1.001.p
% Solved 1 out of 1.
% # Problem is unsatisfiable (or provable), constructing proof object
% # SZS status Theorem
% # SZS output start CNFRefutation.
% See solution above
% # SZS output end CNFRefutation
%
%------------------------------------------------------------------------------
```