TSTP Solution File: SEU163+1 by Twee---2.4.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.1
% Problem  : SEU163+1 : TPTP v8.1.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n013.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Tue Sep 20 06:58:59 EDT 2022

% Result   : Theorem 0.18s 0.38s
% Output   : Proof 0.18s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : SEU163+1 : TPTP v8.1.0. Released v3.3.0.
% 0.03/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.12/0.34  % Computer : n013.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % WCLimit  : 300
% 0.12/0.34  % DateTime : Sat Sep  3 09:45:01 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 0.18/0.38  % SZS status Theorem
% 0.18/0.38  
% 0.18/0.38  % SZS output start Proof
% 0.18/0.38  Take the following subset of the input axioms:
% 0.18/0.38    fof(l50_zfmisc_1, axiom, ![B, A2]: (in(A2, B) => subset(A2, union(B)))).
% 0.18/0.38    fof(t92_zfmisc_1, conjecture, ![A, B2]: (in(A, B2) => subset(A, union(B2)))).
% 0.18/0.38  
% 0.18/0.38  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.18/0.38  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.18/0.38  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.18/0.38    fresh(y, y, x1...xn) = u
% 0.18/0.38    C => fresh(s, t, x1...xn) = v
% 0.18/0.38  where fresh is a fresh function symbol and x1..xn are the free
% 0.18/0.38  variables of u and v.
% 0.18/0.38  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.18/0.38  input problem has no model of domain size 1).
% 0.18/0.38  
% 0.18/0.38  The encoding turns the above axioms into the following unit equations and goals:
% 0.18/0.38  
% 0.18/0.38  Axiom 1 (t92_zfmisc_1): in(a, b) = true2.
% 0.18/0.38  Axiom 2 (l50_zfmisc_1): fresh(X, X, Y, Z) = true2.
% 0.18/0.38  Axiom 3 (l50_zfmisc_1): fresh(in(X, Y), true2, X, Y) = subset(X, union(Y)).
% 0.18/0.38  
% 0.18/0.38  Goal 1 (t92_zfmisc_1_1): subset(a, union(b)) = true2.
% 0.18/0.38  Proof:
% 0.18/0.38    subset(a, union(b))
% 0.18/0.38  = { by axiom 3 (l50_zfmisc_1) R->L }
% 0.18/0.38    fresh(in(a, b), true2, a, b)
% 0.18/0.38  = { by axiom 1 (t92_zfmisc_1) }
% 0.18/0.38    fresh(true2, true2, a, b)
% 0.18/0.38  = { by axiom 2 (l50_zfmisc_1) }
% 0.18/0.38    true2
% 0.18/0.38  % SZS output end Proof
% 0.18/0.38  
% 0.18/0.38  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------