## TSTP Solution File: SYN367+1 by Faust---1.0

View Problem - Process Solution

```%------------------------------------------------------------------------------
% File     : Faust---1.0
% Problem  : SYN367+1 : TPTP v3.4.2. Released v2.0.0.
% Transfm  : none
% Format   : tptp
% Command  : faust %s

% Computer : art03.cs.miami.edu
% Model    : i686 i686
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 1003MB
% OS       : Linux 2.6.17-1.2142_FC4
% CPULimit : 600s
% DateTime : Wed May  6 17:51:43 EDT 2009

% Result   : Theorem 0.1s
% Output   : Refutation 0.1s
% Verified :
% SZS Type : Refutation
%            Derivation depth      :    5
%            Number of leaves      :    1
% Syntax   : Number of formulae    :    9 (   5 unt;   0 def)
%            Number of atoms       :   43 (   0 equ)
%            Maximal formula atoms :   32 (   4 avg)
%            Number of connectives :   57 (  23   ~;  19   |;  15   &)
%                                         (   0 <=>;   0  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   19 (   4 avg)
%            Maximal term depth    :    2 (   1 avg)
%            Number of predicates  :    4 (   3 usr;   2 prp; 0-1 aty)
%            Number of functors    :    2 (   2 usr;   0 con; 1-1 aty)
%            Number of variables   :    7 (   5 sgn   1   !;   0   ?)

%------------------------------------------------------------------------------
%----WARNING: Faust---1.0 format not known, defaulting to TPTP
fof(x2118,plain,
! [A] :
( ( ~ big_q(x_nn_1(A))
| p )
& ( ~ big_r(x(A))
| p )
& ( ~ p
| p )
& ( big_r(A)
| p )
& ( ~ big_q(x_nn_1(A))
| big_q(A) )
& ( ~ big_r(x(A))
| big_q(A) )
& ( ~ p
| big_q(A) )
& ( big_r(A)
| big_q(A) )
& ( ~ big_q(x_nn_1(A))
| ~ big_q(x_nn_1(A)) )
& ( ~ big_r(x(A))
| ~ big_q(x_nn_1(A)) )
& ( ~ p
| ~ big_q(x_nn_1(A)) )
& ( big_r(A)
| ~ big_q(x_nn_1(A)) )
& ( ~ big_q(x_nn_1(A))
| ~ big_r(x(A)) )
& ( ~ big_r(x(A))
| ~ big_r(x(A)) )
& ( ~ p
| ~ big_r(x(A)) )
& ( big_r(A)
| ~ big_r(x(A)) ) ),
file('/home/graph/tptp/TSTP/PreparedTPTP/tptp---none/SYN/SYN367+1.tptp',unknown),
[] ).

cnf(168844552,plain,
( big_r(A)
| ~ big_q(x_nn_1(A)) ),
inference(rewrite,[status(thm)],[x2118]),
[] ).

cnf(168867200,plain,
( ~ p
| big_q(A) ),
inference(rewrite,[status(thm)],[x2118]),
[] ).

cnf(168871920,plain,
( big_r(A)
| p ),
inference(rewrite,[status(thm)],[x2118]),
[] ).

cnf(168824576,plain,
p,
inference(rewrite__forward_subsumption_resolution,[status(thm)],[x2118,168871920]),
[] ).

cnf(200252360,plain,
big_q(A),
inference(resolution,[status(thm)],[168867200,168824576]),
[] ).

cnf(200256856,plain,
big_r(A),
inference(resolution,[status(thm)],[168844552,200252360]),
[] ).

cnf(168839952,plain,
~ big_r(x(A)),
inference(rewrite,[status(thm)],[x2118]),
[] ).

\$false,
inference(resolution,[status(thm)],[200256856,168839952]),
[] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% Proof found in: 0 seconds
% START OF PROOF SEQUENCE
% fof(x2118,plain,(((~big_q(x_nn_1(A))|p)&(~big_r(x(A))|p)&(~p|p)&(big_r(A)|p)&(~big_q(x_nn_1(A))|big_q(A))&(~big_r(x(A))|big_q(A))&(~p|big_q(A))&(big_r(A)|big_q(A))&(~big_q(x_nn_1(A))|~big_q(x_nn_1(A)))&(~big_r(x(A))|~big_q(x_nn_1(A)))&(~p|~big_q(x_nn_1(A)))&(big_r(A)|~big_q(x_nn_1(A)))&(~big_q(x_nn_1(A))|~big_r(x(A)))&(~big_r(x(A))|~big_r(x(A)))&(~p|~big_r(x(A)))&(big_r(A)|~big_r(x(A))))),file('/home/graph/tptp/TSTP/PreparedTPTP/tptp---none/SYN/SYN367+1.tptp',unknown),[]).
%
% cnf(168844552,plain,(big_r(A)|~big_q(x_nn_1(A))),inference(rewrite,[status(thm)],[x2118]),[]).
%
% cnf(168867200,plain,(~p|big_q(A)),inference(rewrite,[status(thm)],[x2118]),[]).
%
% cnf(168871920,plain,(big_r(A)|p),inference(rewrite,[status(thm)],[x2118]),[]).
%
% cnf(168824576,plain,(p),inference(rewrite__forward_subsumption_resolution,[status(thm)],[x2118,168871920]),[]).
%
% cnf(200252360,plain,(big_q(A)),inference(resolution,[status(thm)],[168867200,168824576]),[]).
%
% cnf(200256856,plain,(big_r(A)),inference(resolution,[status(thm)],[168844552,200252360]),[]).
%
% cnf(168839952,plain,(~big_r(x(A))),inference(rewrite,[status(thm)],[x2118]),[]).
%