## TSTP Solution File: SYN367+1 by SInE---0.4

View Problem - Process Solution

```%------------------------------------------------------------------------------
% File     : SInE---0.4
% Problem  : SYN367+1 : TPTP v5.0.0. Released v2.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : Source/sine.py -e eprover -t %d %s

% Computer : art05.cs.miami.edu
% Model    : i686 i686
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 2018MB
% OS       : Linux 2.6.26.8-57.fc8
% CPULimit : 300s
% DateTime : Sun Dec 26 13:17:33 EST 2010

% Result   : Theorem 0.16s
% Output   : CNFRefutation 0.16s
% Verified :
% SZS Type : Refutation
%            Derivation depth      :   14
%            Number of leaves      :    1
% Syntax   : Number of formulae    :   18 (   7 unt;   0 def)
%            Number of atoms       :   65 (   0 equ)
%            Maximal formula atoms :   10 (   3 avg)
%            Number of connectives :   71 (  24   ~;  17   |;  27   &)
%                                         (   0 <=>;   3  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    8 (   4 avg)
%            Maximal term depth    :    1 (   1 avg)
%            Number of predicates  :    4 (   3 usr;   2 prp; 0-1 aty)
%            Number of functors    :    2 (   2 usr;   2 con; 0-0 aty)
%            Number of variables   :   22 (   4 sgn  14   !;   4   ?)

%------------------------------------------------------------------------------
fof(1,conjecture,
( ! [X1] :
( ( p
& big_q(X1) )
| ( ~ p
& big_r(X1) ) )
=> ( ! [X1] : big_q(X1)
| ! [X1] : big_r(X1) ) ),
file('/tmp/tmpz8i5HR/sel_SYN367+1.p_1',x2118) ).

fof(2,negated_conjecture,
~ ( ! [X1] :
( ( p
& big_q(X1) )
| ( ~ p
& big_r(X1) ) )
=> ( ! [X1] : big_q(X1)
| ! [X1] : big_r(X1) ) ),
inference(assume_negation,[status(cth)],[1]) ).

fof(3,negated_conjecture,
~ ( ! [X1] :
( ( p
& big_q(X1) )
| ( ~ p
& big_r(X1) ) )
=> ( ! [X1] : big_q(X1)
| ! [X1] : big_r(X1) ) ),
inference(fof_simplification,[status(thm)],[2,theory(equality)]) ).

fof(4,negated_conjecture,
( ! [X1] :
( ( p
& big_q(X1) )
| ( ~ p
& big_r(X1) ) )
& ? [X1] : ~ big_q(X1)
& ? [X1] : ~ big_r(X1) ),
inference(fof_nnf,[status(thm)],[3]) ).

fof(5,negated_conjecture,
( ! [X2] :
( ( p
& big_q(X2) )
| ( ~ p
& big_r(X2) ) )
& ? [X3] : ~ big_q(X3)
& ? [X4] : ~ big_r(X4) ),
inference(variable_rename,[status(thm)],[4]) ).

fof(6,negated_conjecture,
( ! [X2] :
( ( p
& big_q(X2) )
| ( ~ p
& big_r(X2) ) )
& ~ big_q(esk1_0)
& ~ big_r(esk2_0) ),
inference(skolemize,[status(esa)],[5]) ).

fof(7,negated_conjecture,
! [X2] :
( ( ( p
& big_q(X2) )
| ( ~ p
& big_r(X2) ) )
& ~ big_q(esk1_0)
& ~ big_r(esk2_0) ),
inference(shift_quantors,[status(thm)],[6]) ).

fof(8,negated_conjecture,
! [X2] :
( ( ~ p
| p )
& ( big_r(X2)
| p )
& ( ~ p
| big_q(X2) )
& ( big_r(X2)
| big_q(X2) )
& ~ big_q(esk1_0)
& ~ big_r(esk2_0) ),
inference(distribute,[status(thm)],[7]) ).

cnf(9,negated_conjecture,
~ big_r(esk2_0),
inference(split_conjunct,[status(thm)],[8]) ).

cnf(10,negated_conjecture,
~ big_q(esk1_0),
inference(split_conjunct,[status(thm)],[8]) ).

cnf(12,negated_conjecture,
( big_q(X1)
| ~ p ),
inference(split_conjunct,[status(thm)],[8]) ).

cnf(13,negated_conjecture,
( p
| big_r(X1) ),
inference(split_conjunct,[status(thm)],[8]) ).

cnf(15,negated_conjecture,
p,
inference(spm,[status(thm)],[9,13,theory(equality)]) ).

cnf(18,negated_conjecture,
( big_q(X1)
| \$false ),
inference(rw,[status(thm)],[12,15,theory(equality)]) ).

cnf(19,negated_conjecture,
big_q(X1),
inference(cn,[status(thm)],[18,theory(equality)]) ).

cnf(21,negated_conjecture,
\$false,
inference(rw,[status(thm)],[10,19,theory(equality)]) ).

cnf(22,negated_conjecture,
\$false,
inference(cn,[status(thm)],[21,theory(equality)]) ).

cnf(23,negated_conjecture,
\$false,
22,
[proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % SZS status Started for /home/graph/tptp/TPTP/Problems/SYN/SYN367+1.p
% --creating new selector for []
% -running prover on /tmp/tmpz8i5HR/sel_SYN367+1.p_1 with time limit 29
% -prover status Theorem
% Problem SYN367+1.p solved in phase 0.
% % SZS status Theorem for /home/graph/tptp/TPTP/Problems/SYN/SYN367+1.p
% % SZS status Ended for /home/graph/tptp/TPTP/Problems/SYN/SYN367+1.p
% Solved 1 out of 1.
% # Problem is unsatisfiable (or provable), constructing proof object
% # SZS status Theorem
% # SZS output start CNFRefutation.
% See solution above
% # SZS output end CNFRefutation
%
%------------------------------------------------------------------------------
```