## TSTP Solution File: SYN367+1 by SRASS---0.1

View Problem - Process Solution

```%------------------------------------------------------------------------------
% File     : SRASS---0.1
% Problem  : SYN367+1 : TPTP v5.0.0. Released v2.0.0.
% Transfm  : none
% Format   : tptp
% Command  : SRASS -q2 -a 0 10 10 10 -i3 -n60 %s

% Computer : art11.cs.miami.edu
% Model    : i686 i686
% CPU      : Intel(R) Pentium(R) 4 CPU 3.00GHz @ 3000MHz
% Memory   : 2006MB
% OS       : Linux 2.6.31.5-127.fc12.i686.PAE
% CPULimit : 300s
% DateTime : Thu Dec 30 09:30:49 EST 2010

% Result   : Theorem 1.08s
% Output   : Solution 1.08s
% Verified :
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% Extracting the conjecture
% Sorting axioms by relevance
% Looking for THM       ...
% found
% SZS status THM for /tmp/SystemOnTPTP29010/SYN367+1.tptp
% SZS output start Solution for /tmp/SystemOnTPTP29010/SYN367+1.tptp
% TreeLimitedRun: ----------------------------------------------------------
% TreeLimitedRun: /home/graph/tptp/Systems/EP---1.2/eproof --print-statistics -xAuto -tAuto --cpu-limit=60 --proof-time-unlimited --memory-limit=Auto --tstp-in --tstp-out /tmp/SRASS.s.p
% TreeLimitedRun: CPU time limit is 60s
% TreeLimitedRun: WC  time limit is 120s
% TreeLimitedRun: PID is 29142
% TreeLimitedRun: ----------------------------------------------------------
% PrfWatch: 0.00 CPU 0.01 WC
% # Preprocessing time   : 0.010 s
% # Problem is unsatisfiable (or provable), constructing proof object
% # SZS status Theorem
% # SZS output start CNFRefutation.
% fof(1, conjecture,(![X1]:((p&big_q(X1))|(~(p)&big_r(X1)))=>(![X1]:big_q(X1)|![X1]:big_r(X1))),file('/tmp/SRASS.s.p', x2118)).
% fof(2, negated_conjecture,~((![X1]:((p&big_q(X1))|(~(p)&big_r(X1)))=>(![X1]:big_q(X1)|![X1]:big_r(X1)))),inference(assume_negation,[status(cth)],[1])).
% fof(3, negated_conjecture,~((![X1]:((p&big_q(X1))|(~(p)&big_r(X1)))=>(![X1]:big_q(X1)|![X1]:big_r(X1)))),inference(fof_simplification,[status(thm)],[2,theory(equality)])).
% fof(4, negated_conjecture,(![X1]:((p&big_q(X1))|(~(p)&big_r(X1)))&(?[X1]:~(big_q(X1))&?[X1]:~(big_r(X1)))),inference(fof_nnf,[status(thm)],[3])).
% fof(5, negated_conjecture,(![X2]:((p&big_q(X2))|(~(p)&big_r(X2)))&(?[X3]:~(big_q(X3))&?[X4]:~(big_r(X4)))),inference(variable_rename,[status(thm)],[4])).
% fof(6, negated_conjecture,(![X2]:((p&big_q(X2))|(~(p)&big_r(X2)))&(~(big_q(esk1_0))&~(big_r(esk2_0)))),inference(skolemize,[status(esa)],[5])).
% fof(7, negated_conjecture,![X2]:(((p&big_q(X2))|(~(p)&big_r(X2)))&(~(big_q(esk1_0))&~(big_r(esk2_0)))),inference(shift_quantors,[status(thm)],[6])).
% fof(8, negated_conjecture,![X2]:((((~(p)|p)&(big_r(X2)|p))&((~(p)|big_q(X2))&(big_r(X2)|big_q(X2))))&(~(big_q(esk1_0))&~(big_r(esk2_0)))),inference(distribute,[status(thm)],[7])).
% cnf(9,negated_conjecture,(~big_r(esk2_0)),inference(split_conjunct,[status(thm)],[8])).
% cnf(10,negated_conjecture,(~big_q(esk1_0)),inference(split_conjunct,[status(thm)],[8])).
% cnf(12,negated_conjecture,(big_q(X1)|~p),inference(split_conjunct,[status(thm)],[8])).
% cnf(13,negated_conjecture,(p|big_r(X1)),inference(split_conjunct,[status(thm)],[8])).
% cnf(16,negated_conjecture,(p),inference(spm,[status(thm)],[9,13,theory(equality)])).
% cnf(18,negated_conjecture,(big_q(X1)|\$false),inference(rw,[status(thm)],[12,16,theory(equality)])).
% cnf(19,negated_conjecture,(big_q(X1)),inference(cn,[status(thm)],[18,theory(equality)])).
% cnf(21,negated_conjecture,(\$false),inference(rw,[status(thm)],[10,19,theory(equality)])).
% cnf(22,negated_conjecture,(\$false),inference(cn,[status(thm)],[21,theory(equality)])).
% cnf(23,negated_conjecture,(\$false),22,['proof']).
% # SZS output end CNFRefutation
% # Processed clauses                : 13
% # ...of these trivial              : 0
% # ...subsumed                      : 0
% # ...remaining for further processing: 13
% # Other redundant clauses eliminated : 0
% # Clauses deleted for lack of memory : 0
% # Backward-subsumed                : 1
% # Backward-rewritten               : 3
% # Generated clauses                : 3
% # ...of the previous two non-trivial : 4
% # Contextual simplify-reflections  : 0
% # Paramodulations                  : 3
% # Factorizations                   : 0
% # Equation resolutions             : 0
% # Current number of processed clauses: 4
% #    Positive orientable unit clauses: 3
% #    Positive unorientable unit clauses: 0
% #    Negative unit clauses         : 1
% #    Non-unit-clauses              : 0
% # Current number of unprocessed clauses: 0
% # ...number of literals in the above : 0
% # Clause-clause subsumption calls (NU) : 0
% # Rec. Clause-clause subsumption calls : 0
% # Unit Clause-clause subsumption calls : 2
% # Rewrite failures with RHS unbound: 0
% # Indexed BW rewrite attempts      : 3
% # Indexed BW rewrite successes     : 3
% # Backwards rewriting index:     7 leaves,   1.00+/-0.000 terms/leaf
% # Paramod-from index:            3 leaves,   1.00+/-0.000 terms/leaf
% # Paramod-into index:            6 leaves,   1.00+/-0.000 terms/leaf
% # -------------------------------------------------
% # User time            : 0.008 s
% # System time          : 0.003 s
% # Total time           : 0.011 s
% # Maximum resident set size: 0 pages
% PrfWatch: 0.10 CPU 0.17 WC
% FINAL PrfWatch: 0.10 CPU 0.17 WC
% SZS output end Solution for /tmp/SystemOnTPTP29010/SYN367+1.tptp
%
%------------------------------------------------------------------------------
```