TSTP Solution File: SYN429-1 by iProver---3.6

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : iProver---3.6
% Problem  : SYN429-1 : TPTP v8.1.0. Released v2.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python3 prover_driver.py --schedule_mode external --schedule fof_schedule --no_cores 8 --problem_version fof /export/starexec/sandbox/benchmark/theBenchmark.p 300 --prover /export/starexec/sandbox/solver/bin/res/iproveropt_no_z3

% Computer : n010.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Sep 29 22:27:30 EDT 2022

% Result   : Satisfiable 7.58s 2.04s
% Output   : Model 7.58s
% Verified : 
% SZS Type : ERROR: Analysing output (MakeTreeStats fails)

% Comments : 
%------------------------------------------------------------------------------
%------ Positive definition of ssSkC34 
fof(lit_def,axiom,
    ( ssSkC34
  <=> $true ) ).

%------ Positive definition of ndr1_0 
fof(lit_def_001,axiom,
    ( ndr1_0
  <=> $true ) ).

%------ Positive definition of ssSkC33 
fof(lit_def_002,axiom,
    ( ssSkC33
  <=> $false ) ).

%------ Positive definition of ssSkC32 
fof(lit_def_003,axiom,
    ( ssSkC32
  <=> $true ) ).

%------ Positive definition of ssSkC30 
fof(lit_def_004,axiom,
    ( ssSkC30
  <=> $true ) ).

%------ Positive definition of ssSkC28 
fof(lit_def_005,axiom,
    ( ssSkC28
  <=> $true ) ).

%------ Positive definition of ssSkC27 
fof(lit_def_006,axiom,
    ( ssSkC27
  <=> $true ) ).

%------ Positive definition of ssSkC26 
fof(lit_def_007,axiom,
    ( ssSkC26
  <=> $false ) ).

%------ Positive definition of ssSkC24 
fof(lit_def_008,axiom,
    ( ssSkC24
  <=> $false ) ).

%------ Positive definition of ssSkC21 
fof(lit_def_009,axiom,
    ( ssSkC21
  <=> $false ) ).

%------ Positive definition of ssSkC19 
fof(lit_def_010,axiom,
    ( ssSkC19
  <=> $false ) ).

%------ Positive definition of ssSkC17 
fof(lit_def_011,axiom,
    ( ssSkC17
  <=> $true ) ).

%------ Positive definition of ssSkC15 
fof(lit_def_012,axiom,
    ( ssSkC15
  <=> $true ) ).

%------ Positive definition of ssSkC14 
fof(lit_def_013,axiom,
    ( ssSkC14
  <=> $true ) ).

%------ Positive definition of ssSkC12 
fof(lit_def_014,axiom,
    ( ssSkC12
  <=> $true ) ).

%------ Positive definition of ssSkC8 
fof(lit_def_015,axiom,
    ( ssSkC8
  <=> $false ) ).

%------ Positive definition of ssSkC1 
fof(lit_def_016,axiom,
    ( ssSkC1
  <=> $false ) ).

%------ Negative definition of ndr1_1 
fof(lit_def_017,axiom,
    ! [X0] :
      ( ~ ndr1_1(X0)
    <=> X0 = a201 ) ).

%------ Positive definition of c9_1 
fof(lit_def_018,axiom,
    ! [X0] :
      ( c9_1(X0)
    <=> $false ) ).

%------ Positive definition of ssSkC31 
fof(lit_def_019,axiom,
    ( ssSkC31
  <=> $false ) ).

%------ Positive definition of ssSkC29 
fof(lit_def_020,axiom,
    ( ssSkC29
  <=> $false ) ).

%------ Positive definition of c4_0 
fof(lit_def_021,axiom,
    ( c4_0
  <=> $false ) ).

%------ Positive definition of c1_0 
fof(lit_def_022,axiom,
    ( c1_0
  <=> $false ) ).

%------ Positive definition of ssSkC9 
fof(lit_def_023,axiom,
    ( ssSkC9
  <=> $false ) ).

%------ Positive definition of c6_0 
fof(lit_def_024,axiom,
    ( c6_0
  <=> $false ) ).

%------ Positive definition of c7_0 
fof(lit_def_025,axiom,
    ( c7_0
  <=> $true ) ).

%------ Positive definition of c5_0 
fof(lit_def_026,axiom,
    ( c5_0
  <=> $false ) ).

%------ Positive definition of ssSkC7 
fof(lit_def_027,axiom,
    ( ssSkC7
  <=> $false ) ).

%------ Positive definition of ssSkC6 
fof(lit_def_028,axiom,
    ( ssSkC6
  <=> $false ) ).

%------ Positive definition of ssSkC5 
fof(lit_def_029,axiom,
    ( ssSkC5
  <=> $true ) ).

%------ Positive definition of c8_0 
fof(lit_def_030,axiom,
    ( c8_0
  <=> $true ) ).

%------ Positive definition of ssSkC3 
fof(lit_def_031,axiom,
    ( ssSkC3
  <=> $true ) ).

%------ Positive definition of c3_0 
fof(lit_def_032,axiom,
    ( c3_0
  <=> $true ) ).

%------ Positive definition of ssSkC2 
fof(lit_def_033,axiom,
    ( ssSkC2
  <=> $true ) ).

%------ Positive definition of c2_0 
fof(lit_def_034,axiom,
    ( c2_0
  <=> $true ) ).

%------ Positive definition of c10_0 
fof(lit_def_035,axiom,
    ( c10_0
  <=> $false ) ).

%------ Positive definition of c9_0 
fof(lit_def_036,axiom,
    ( c9_0
  <=> $true ) ).

%------ Positive definition of c8_1 
fof(lit_def_037,axiom,
    ! [X0] :
      ( c8_1(X0)
    <=> X0 = a182 ) ).

%------ Negative definition of ssSkP17 
fof(lit_def_038,axiom,
    ! [X0] :
      ( ~ ssSkP17(X0)
    <=> ( X0 = a74
        | X0 = a61 ) ) ).

%------ Positive definition of c10_1 
fof(lit_def_039,axiom,
    ! [X0] :
      ( c10_1(X0)
    <=> ( X0 = a182
        | X0 = a67
        | X0 = a1
        | X0 = a39
        | X0 = a19
        | X0 = a201 ) ) ).

%------ Positive definition of c2_1 
fof(lit_def_040,axiom,
    ! [X0] :
      ( c2_1(X0)
    <=> ( X0 = a189
        | X0 = a27 ) ) ).

%------ Positive definition of c4_1 
fof(lit_def_041,axiom,
    ! [X0] :
      ( c4_1(X0)
    <=> ( X0 = a74
        | X0 = a73
        | X0 = a56
        | X0 = a4
        | X0 = a19
        | X0 = a165 ) ) ).

%------ Negative definition of c3_1 
fof(lit_def_042,axiom,
    ! [X0] :
      ( ~ c3_1(X0)
    <=> ( X0 = a182
        | X0 = a72
        | X0 = a56
        | X0 = a1
        | X0 = a201 ) ) ).

%------ Negative definition of ssSkP16 
fof(lit_def_043,axiom,
    ! [X0] :
      ( ~ ssSkP16(X0)
    <=> ( X0 = a74
        | X0 = a61 ) ) ).

%------ Positive definition of c5_1 
fof(lit_def_044,axiom,
    ! [X0] :
      ( c5_1(X0)
    <=> ( X0 = a182
        | X0 = a172
        | X0 = a67
        | X0 = a83
        | X0 = a39
        | X0 = a19
        | X0 = a201 ) ) ).

%------ Negative definition of ssSkP15 
fof(lit_def_045,axiom,
    ! [X0] :
      ( ~ ssSkP15(X0)
    <=> $false ) ).

%------ Positive definition of c1_1 
fof(lit_def_046,axiom,
    ! [X0] :
      ( c1_1(X0)
    <=> ( X0 = a158
        | X0 = a72 ) ) ).

%------ Positive definition of ssSkP14 
fof(lit_def_047,axiom,
    ! [X0] :
      ( ssSkP14(X0)
    <=> $true ) ).

%------ Positive definition of c7_1 
fof(lit_def_048,axiom,
    ! [X0] :
      ( c7_1(X0)
    <=> $false ) ).

%------ Positive definition of ssSkP13 
fof(lit_def_049,axiom,
    ! [X0] :
      ( ssSkP13(X0)
    <=> $true ) ).

%------ Positive definition of ssSkP12 
fof(lit_def_050,axiom,
    ! [X0] :
      ( ssSkP12(X0)
    <=> $true ) ).

%------ Positive definition of ssSkP11 
fof(lit_def_051,axiom,
    ! [X0] :
      ( ssSkP11(X0)
    <=> $true ) ).

%------ Positive definition of ssSkP10 
fof(lit_def_052,axiom,
    ! [X0] :
      ( ssSkP10(X0)
    <=> $true ) ).

%------ Negative definition of ssSkP9 
fof(lit_def_053,axiom,
    ! [X0] :
      ( ~ ssSkP9(X0)
    <=> $false ) ).

%------ Positive definition of ssSkP8 
fof(lit_def_054,axiom,
    ! [X0] :
      ( ssSkP8(X0)
    <=> $true ) ).

%------ Positive definition of ssSkP7 
fof(lit_def_055,axiom,
    ! [X0] :
      ( ssSkP7(X0)
    <=> $true ) ).

%------ Negative definition of ssSkP6 
fof(lit_def_056,axiom,
    ! [X0] :
      ( ~ ssSkP6(X0)
    <=> X0 = a74 ) ).

%------ Negative definition of ssSkP5 
fof(lit_def_057,axiom,
    ! [X0] :
      ( ~ ssSkP5(X0)
    <=> $false ) ).

%------ Positive definition of ssSkP4 
fof(lit_def_058,axiom,
    ! [X0] :
      ( ssSkP4(X0)
    <=> $true ) ).

%------ Positive definition of ssSkP3 
fof(lit_def_059,axiom,
    ! [X0] :
      ( ssSkP3(X0)
    <=> $true ) ).

%------ Negative definition of ssSkP2 
fof(lit_def_060,axiom,
    ! [X0] :
      ( ~ ssSkP2(X0)
    <=> X0 = a74 ) ).

%------ Positive definition of ssSkP1 
fof(lit_def_061,axiom,
    ! [X0] :
      ( ssSkP1(X0)
    <=> $true ) ).

%------ Negative definition of ssSkP0 
fof(lit_def_062,axiom,
    ! [X0] :
      ( ~ ssSkP0(X0)
    <=> $false ) ).

%------ Positive definition of c8_2 
fof(lit_def_063,axiom,
    ! [X0,X1] :
      ( c8_2(X0,X1)
    <=> ( ( X0 = a189
          & X1 = a191 )
        | ( X0 = a74
          & X1 = a75 )
        | ( X0 = a12
          & X1 = a13 )
        | ( X0 = a169
          & X1 = a23 )
        | ( X0 = a169
          & X1 = a55 )
        | ( X0 = a61
          & X1 != a176
          & X1 != a100
          & X1 != a9
          & X1 != a42
          & X1 != a55 )
        | ( X0 = a61
          & X1 = a100 )
        | ( X0 = a61
          & X1 = a9 )
        | ( X0 = a61
          & X1 = a42 )
        | ( X0 = a61
          & X1 = a55 )
        | ( X0 = a19
          & X1 != a100
          & X1 != a9
          & X1 != a42
          & X1 != a55 )
        | ( X0 = a19
          & X1 = a55 )
        | ( X0 = a152
          & X1 = a154 ) ) ) ).

%------ Positive definition of c10_2 
fof(lit_def_064,axiom,
    ! [X0,X1] :
      ( c10_2(X0,X1)
    <=> ( ( X0 = a182
          & X1 = a143 )
        | ( X0 = a158
          & X1 = a159 )
        | ( X0 = a74
          & X1 = a75 )
        | ( X0 = a74
          & X1 = a52 )
        | ( X0 = a12
          & X1 = a13 )
        | ( X0 = a1
          & X1 = a68 )
        | ( X0 = a146
          & X1 = a147 )
        | ( X0 = a127
          & X1 = a128 )
        | ( X0 = a61
          & X1 = a208 )
        | ( X0 = a61
          & X1 = a9 )
        | ( X0 = a152
          & X1 = a153 )
        | ( X0 = a195
          & X1 = a197 )
        | ( X0 = a165
          & X1 = a166 ) ) ) ).

%------ Positive definition of c5_2 
fof(lit_def_065,axiom,
    ! [X0,X1] :
      ( c5_2(X0,X1)
    <=> ( ( X0 = a182
          & X1 = a143 )
        | ( X0 = a74
          & X1 = a208 )
        | ( X0 = a74
          & X1 = a161 )
        | ( X0 = a74
          & X1 = a52 )
        | ( X0 = a12
          & X1 = a14 )
        | ( X0 = a12
          & X1 = a209 )
        | ( X0 = a7
          & X1 = a161 )
        | ( X0 = a1
          & X1 = a185 )
        | ( X0 = a169
          & X1 = a170 )
        | ( X0 = a146
          & X1 = a147 )
        | ( X0 = a61
          & X1 = a208 )
        | ( X0 = a61
          & X1 = a178 )
        | ( X0 = a45
          & X1 = a46 )
        | ( X0 = a19
          & X1 = a100 )
        | ( X0 = a19
          & X1 = a9 )
        | ( X0 = a19
          & X1 = a42 )
        | ( X0 = a162
          & X1 = a163 )
        | ( X0 = a162
          & X1 = a161 )
        | ( X0 = a160
          & X1 = a161 )
        | ( X0 = a165
          & X1 = a166 )
        | ( X1 = a161
          & X0 != a74
          & X0 != a7
          & X0 != a162
          & X0 != a160 ) ) ) ).

%------ Positive definition of ssSkC20 
fof(lit_def_066,axiom,
    ( ssSkC20
  <=> $true ) ).

%------ Positive definition of c6_1 
fof(lit_def_067,axiom,
    ! [X0] :
      ( c6_1(X0)
    <=> X0 = a74 ) ).

%------ Positive definition of ssSkC13 
fof(lit_def_068,axiom,
    ( ssSkC13
  <=> $true ) ).

%------ Positive definition of ssSkC11 
fof(lit_def_069,axiom,
    ( ssSkC11
  <=> $true ) ).

%------ Positive definition of c2_2 
fof(lit_def_070,axiom,
    ! [X0,X1] :
      ( c2_2(X0,X1)
    <=> ( ( X0 = a74
          & X1 = a208 )
        | ( X0 = a74
          & X1 = a65 )
        | ( X0 = a61
          & X1 = a208 )
        | ( X0 = a162
          & X1 = a163 ) ) ) ).

%------ Negative definition of c4_2 
fof(lit_def_071,axiom,
    ! [X0,X1] :
      ( ~ c4_2(X0,X1)
    <=> ( ( X0 = a182
          & X1 != a161 )
        | ( X0 = a182
          & X1 = a161 )
        | ( X0 = a172
          & X1 != a161 )
        | ( X0 = a158
          & X1 = a159 )
        | ( X0 = a74
          & X1 != a208
          & X1 != a161
          & X1 != a65 )
        | ( X0 = a74
          & X1 = a176 )
        | ( X0 = a74
          & X1 = a41 )
        | ( X0 = a74
          & X1 = a22 )
        | ( X0 = a74
          & X1 = a11 )
        | ( X0 = a74
          & X1 = a52 )
        | ( X0 = a74
          & X1 = a185 )
        | X0 = a67
        | ( X0 = a67
          & X1 = a161 )
        | ( X0 = a12
          & X1 = a13 )
        | ( X0 = a4
          & X1 = a6 )
        | ( X0 = a4
          & X1 = a5 )
        | X0 = a1
        | ( X0 = a1
          & X1 = a2 )
        | ( X0 = a1
          & X1 = a161 )
        | ( X0 = a1
          & X1 = a42 )
        | ( X0 = a183
          & X1 != a161 )
        | ( X0 = a183
          & X1 = a184 )
        | ( X0 = a169
          & X1 = a66 )
        | ( X0 = a169
          & X1 = a34 )
        | ( X0 = a83
          & X1 != a161 )
        | ( X0 = a61
          & X1 = a176 )
        | ( X0 = a59
          & X1 = a60 )
        | ( X0 = a45
          & X1 = a46 )
        | X0 = a39
        | ( X0 = a39
          & X1 = a161 )
        | ( X0 = a162
          & X1 != a161 )
        | ( X0 = a162
          & X1 = a163 )
        | ( X0 = a152
          & X1 = a153 )
        | ( X0 = a195
          & X1 = a197 )
        | ( X0 = a201
          & X1 = a203 )
        | ( X0 = a201
          & X1 = a202 )
        | X1 = a116
        | X1 = a11 ) ) ).

%------ Positive definition of c9_2 
fof(lit_def_072,axiom,
    ! [X0,X1] :
      ( c9_2(X0,X1)
    <=> ( ( X0 = a74
          & X1 = a208 )
        | ( X0 = a74
          & X1 = a22 )
        | ( X0 = a74
          & X1 = a65 )
        | ( X0 = a1
          & X1 = a2 )
        | ( X0 = a61
          & X1 = a208 )
        | ( X0 = a162
          & X1 = a163 )
        | ( X0 = a165
          & X1 = a166 )
        | ( X0 = a201
          & X1 = a203 ) ) ) ).

%------ Positive definition of c6_2 
fof(lit_def_073,axiom,
    ! [X0,X1] :
      ( c6_2(X0,X1)
    <=> ( ( X0 = a213
          & X1 = a161 )
        | ( X0 = a182
          & X1 != a54
          & X1 != a168
          & X1 != a42
          & X1 != a11
          & X1 != a70
          & X1 != a52
          & X1 != a185 )
        | ( X0 = a158
          & X1 = a161 )
        | ( X0 = a74
          & X1 != a208
          & X1 != a54
          & X1 != a168
          & X1 != a42
          & X1 != a11
          & X1 != a65
          & X1 != a70
          & X1 != a52
          & X1 != a185 )
        | ( X0 = a74
          & X1 = a176 )
        | ( X0 = a74
          & X1 = a41 )
        | ( X0 = a74
          & X1 = a161 )
        | ( X0 = a74
          & X1 = a65 )
        | ( X0 = a12
          & X1 = a161 )
        | ( X0 = a4
          & X1 = a6 )
        | ( X0 = a4
          & X1 = a5 )
        | ( X0 = a1
          & X1 != a54
          & X1 != a168
          & X1 != a42
          & X1 != a11
          & X1 != a70
          & X1 != a52
          & X1 != a185 )
        | ( X0 = a1
          & X1 = a2 )
        | ( X0 = a169
          & X1 = a170 )
        | ( X0 = a146
          & X1 = a161 )
        | ( X0 = a127
          & X1 = a161 )
        | ( X0 = a61
          & X1 = a176 )
        | ( X0 = a61
          & X1 = a161 )
        | ( X0 = a162
          & X1 = a161 )
        | ( X0 = a160
          & X1 = a161 )
        | ( X0 = a152
          & X1 = a153 )
        | ( X0 = a165
          & X1 = a161 )
        | ( X0 = a201
          & X1 = a203 )
        | ( X1 = a161
          & X0 != a213
          & X0 != a158
          & X0 != a74
          & X0 != a12
          & X0 != a146
          & X0 != a127
          & X0 != a61
          & X0 != a19
          & X0 != a162
          & X0 != a160
          & X0 != a165 ) ) ) ).

%------ Positive definition of c1_2 
fof(lit_def_074,axiom,
    ! [X0,X1] :
      ( c1_2(X0,X1)
    <=> ( ( X0 = a158
          & X1 = a159 )
        | ( X0 = a74
          & X1 = a11 )
        | ( X0 = a74
          & X1 = a185 )
        | ( X0 = a12
          & X1 = a13 )
        | ( X0 = a1
          & X1 = a68 )
        | ( X0 = a1
          & X1 = a42 )
        | ( X0 = a183
          & X1 = a184 )
        | ( X0 = a169
          & X1 = a66 )
        | ( X0 = a169
          & X1 = a11 )
        | ( X0 = a169
          & X1 = a34 )
        | ( X0 = a127
          & X1 = a128 )
        | ( X0 = a59
          & X1 = a60 )
        | ( X0 = a162
          & X1 = a163 )
        | ( X0 = a201
          & X1 = a202 )
        | ( X1 = a11
          & X0 != a182
          & X0 != a74
          & X0 != a1 ) ) ) ).

%------ Positive definition of c3_2 
fof(lit_def_075,axiom,
    ! [X0,X1] :
      ( c3_2(X0,X1)
    <=> ( ( X0 = a1
          & X1 = a68 )
        | ( X0 = a169
          & X1 != a116
          & X1 != a66
          & X1 != a11
          & X1 != a34
          & X1 != a23
          & X1 != a177
          & X1 != a55
          & X1 != a185 )
        | ( X0 = a169
          & X1 = a116 )
        | ( X0 = a169
          & X1 = a177 )
        | ( X0 = a169
          & X1 = a185 )
        | ( X0 = a127
          & X1 = a161 )
        | ( X0 = a61
          & X1 = a62 )
        | ( X0 = a152
          & X1 = a154 )
        | ( X0 = a165
          & X1 = a161 )
        | ( X0 = a201
          & X1 = a203 ) ) ) ).

%------ Negative definition of c7_2 
fof(lit_def_076,axiom,
    ! [X0,X1] :
      ( ~ c7_2(X0,X1)
    <=> ( ( X0 = a215
          & X1 = a217 )
        | ( X0 = a213
          & X1 = a23 )
        | X0 = a172
        | X0 = a158
        | ( X0 = a158
          & X1 = a159 )
        | ( X0 = a158
          & X1 = a78 )
        | X0 = a145
        | X0 = a72
        | ( X0 = a74
          & X1 = a176 )
        | ( X0 = a74
          & X1 = a65 )
        | ( X0 = a74
          & X1 = a78 )
        | X0 = a67
        | ( X0 = a1
          & X1 = a3 )
        | X0 = a83
        | ( X0 = a61
          & X1 = a176 )
        | ( X0 = a59
          & X1 = a60 )
        | X0 = a39
        | ( X0 = a141
          & X1 = a142 )
        | ( X0 = a195
          & X1 = a197 )
        | ( X0 = a192
          & X1 = a193 )
        | ( X0 = a201
          & X1 = a203 )
        | ( X0 = a201
          & X1 = a202 )
        | ( X1 = a66
          & X0 != a213
          & X0 != a1 )
        | ( X1 = a11
          & X0 != a213
          & X0 != a1 )
        | ( X1 = a34
          & X0 != a213
          & X0 != a1 )
        | ( X1 = a23
          & X0 != a213
          & X0 != a1 )
        | ( X1 = a55
          & X0 != a213
          & X0 != a1 ) ) ) ).

%------ Positive definition of ssSkC10 
fof(lit_def_077,axiom,
    ( ssSkC10
  <=> $true ) ).

%------ Positive definition of ssSkC25 
fof(lit_def_078,axiom,
    ( ssSkC25
  <=> $false ) ).

%------ Positive definition of ssSkC22 
fof(lit_def_079,axiom,
    ( ssSkC22
  <=> $true ) ).

%------ Positive definition of ssSkC4 
fof(lit_def_080,axiom,
    ( ssSkC4
  <=> $true ) ).

%------ Positive definition of ssSkC23 
fof(lit_def_081,axiom,
    ( ssSkC23
  <=> $false ) ).

%------ Positive definition of ssSkC0 
fof(lit_def_082,axiom,
    ( ssSkC0
  <=> $true ) ).

%------ Positive definition of ssSkC18 
fof(lit_def_083,axiom,
    ( ssSkC18
  <=> $false ) ).

%------ Positive definition of ssSkC16 
fof(lit_def_084,axiom,
    ( ssSkC16
  <=> $false ) ).

%------ Positive definition of sP0_iProver_split 
fof(lit_def_085,axiom,
    ( sP0_iProver_split
  <=> $false ) ).

%------ Positive definition of sP1_iProver_split 
fof(lit_def_086,axiom,
    ( sP1_iProver_split
  <=> $true ) ).

%------ Positive definition of sP2_iProver_split 
fof(lit_def_087,axiom,
    ( sP2_iProver_split
  <=> $true ) ).

%------ Positive definition of sP3_iProver_split 
fof(lit_def_088,axiom,
    ( sP3_iProver_split
  <=> $false ) ).

%------ Positive definition of sP4_iProver_split 
fof(lit_def_089,axiom,
    ( sP4_iProver_split
  <=> $false ) ).

%------ Positive definition of sP5_iProver_split 
fof(lit_def_090,axiom,
    ( sP5_iProver_split
  <=> $true ) ).

%------ Positive definition of sP6_iProver_split 
fof(lit_def_091,axiom,
    ( sP6_iProver_split
  <=> $false ) ).

%------ Positive definition of sP7_iProver_split 
fof(lit_def_092,axiom,
    ( sP7_iProver_split
  <=> $false ) ).

%------ Positive definition of sP8_iProver_split 
fof(lit_def_093,axiom,
    ( sP8_iProver_split
  <=> $true ) ).

%------ Positive definition of sP9_iProver_split 
fof(lit_def_094,axiom,
    ( sP9_iProver_split
  <=> $true ) ).

%------ Positive definition of sP10_iProver_split 
fof(lit_def_095,axiom,
    ( sP10_iProver_split
  <=> $false ) ).

%------ Positive definition of sP11_iProver_split 
fof(lit_def_096,axiom,
    ( sP11_iProver_split
  <=> $false ) ).

%------ Positive definition of sP12_iProver_split 
fof(lit_def_097,axiom,
    ( sP12_iProver_split
  <=> $false ) ).

%------ Positive definition of sP13_iProver_split 
fof(lit_def_098,axiom,
    ( sP13_iProver_split
  <=> $false ) ).

%------ Positive definition of sP14_iProver_split 
fof(lit_def_099,axiom,
    ( sP14_iProver_split
  <=> $false ) ).

%------ Positive definition of sP15_iProver_split 
fof(lit_def_100,axiom,
    ( sP15_iProver_split
  <=> $true ) ).

%------ Positive definition of sP16_iProver_split 
fof(lit_def_101,axiom,
    ( sP16_iProver_split
  <=> $true ) ).

%------ Positive definition of sP17_iProver_split 
fof(lit_def_102,axiom,
    ( sP17_iProver_split
  <=> $true ) ).

%------ Positive definition of sP18_iProver_split 
fof(lit_def_103,axiom,
    ( sP18_iProver_split
  <=> $true ) ).

%------ Positive definition of sP19_iProver_split 
fof(lit_def_104,axiom,
    ( sP19_iProver_split
  <=> $false ) ).

%------ Positive definition of sP20_iProver_split 
fof(lit_def_105,axiom,
    ( sP20_iProver_split
  <=> $false ) ).

%------ Positive definition of sP21_iProver_split 
fof(lit_def_106,axiom,
    ( sP21_iProver_split
  <=> $false ) ).

%------ Positive definition of sP22_iProver_split 
fof(lit_def_107,axiom,
    ( sP22_iProver_split
  <=> $false ) ).

%------ Positive definition of sP23_iProver_split 
fof(lit_def_108,axiom,
    ( sP23_iProver_split
  <=> $false ) ).

%------ Positive definition of sP24_iProver_split 
fof(lit_def_109,axiom,
    ( sP24_iProver_split
  <=> $false ) ).

%------ Positive definition of sP25_iProver_split 
fof(lit_def_110,axiom,
    ( sP25_iProver_split
  <=> $false ) ).

%------ Positive definition of sP26_iProver_split 
fof(lit_def_111,axiom,
    ( sP26_iProver_split
  <=> $true ) ).

%------ Positive definition of sP27_iProver_split 
fof(lit_def_112,axiom,
    ( sP27_iProver_split
  <=> $false ) ).

%------ Positive definition of sP28_iProver_split 
fof(lit_def_113,axiom,
    ( sP28_iProver_split
  <=> $false ) ).

%------ Positive definition of sP29_iProver_split 
fof(lit_def_114,axiom,
    ( sP29_iProver_split
  <=> $false ) ).

%------ Positive definition of sP30_iProver_split 
fof(lit_def_115,axiom,
    ( sP30_iProver_split
  <=> $false ) ).

%------ Positive definition of sP31_iProver_split 
fof(lit_def_116,axiom,
    ( sP31_iProver_split
  <=> $false ) ).

%------ Positive definition of sP32_iProver_split 
fof(lit_def_117,axiom,
    ( sP32_iProver_split
  <=> $false ) ).

%------ Positive definition of sP33_iProver_split 
fof(lit_def_118,axiom,
    ( sP33_iProver_split
  <=> $false ) ).

%------ Positive definition of sP34_iProver_split 
fof(lit_def_119,axiom,
    ( sP34_iProver_split
  <=> $false ) ).

%------ Positive definition of sP35_iProver_split 
fof(lit_def_120,axiom,
    ( sP35_iProver_split
  <=> $false ) ).

%------ Positive definition of sP36_iProver_split 
fof(lit_def_121,axiom,
    ( sP36_iProver_split
  <=> $true ) ).

%------ Positive definition of sP37_iProver_split 
fof(lit_def_122,axiom,
    ( sP37_iProver_split
  <=> $true ) ).

%------ Positive definition of sP38_iProver_split 
fof(lit_def_123,axiom,
    ( sP38_iProver_split
  <=> $false ) ).

%------ Positive definition of sP39_iProver_split 
fof(lit_def_124,axiom,
    ( sP39_iProver_split
  <=> $true ) ).

%------ Positive definition of sP40_iProver_split 
fof(lit_def_125,axiom,
    ( sP40_iProver_split
  <=> $false ) ).

%------ Positive definition of sP41_iProver_split 
fof(lit_def_126,axiom,
    ( sP41_iProver_split
  <=> $true ) ).

%------ Positive definition of sP42_iProver_split 
fof(lit_def_127,axiom,
    ( sP42_iProver_split
  <=> $true ) ).

%------ Positive definition of sP43_iProver_split 
fof(lit_def_128,axiom,
    ( sP43_iProver_split
  <=> $false ) ).

%------ Positive definition of sP44_iProver_split 
fof(lit_def_129,axiom,
    ( sP44_iProver_split
  <=> $false ) ).

%------ Positive definition of sP45_iProver_split 
fof(lit_def_130,axiom,
    ( sP45_iProver_split
  <=> $false ) ).

%------ Positive definition of sP46_iProver_split 
fof(lit_def_131,axiom,
    ( sP46_iProver_split
  <=> $false ) ).

%------ Positive definition of sP47_iProver_split 
fof(lit_def_132,axiom,
    ( sP47_iProver_split
  <=> $false ) ).

%------ Positive definition of sP48_iProver_split 
fof(lit_def_133,axiom,
    ( sP48_iProver_split
  <=> $false ) ).

%------ Positive definition of sP49_iProver_split 
fof(lit_def_134,axiom,
    ( sP49_iProver_split
  <=> $false ) ).

%------ Positive definition of sP50_iProver_split 
fof(lit_def_135,axiom,
    ( sP50_iProver_split
  <=> $false ) ).

%------ Positive definition of sP51_iProver_split 
fof(lit_def_136,axiom,
    ( sP51_iProver_split
  <=> $false ) ).

%------ Positive definition of sP52_iProver_split 
fof(lit_def_137,axiom,
    ( sP52_iProver_split
  <=> $false ) ).

%------ Positive definition of sP53_iProver_split 
fof(lit_def_138,axiom,
    ( sP53_iProver_split
  <=> $false ) ).

%------ Positive definition of sP54_iProver_split 
fof(lit_def_139,axiom,
    ( sP54_iProver_split
  <=> $false ) ).

%------ Positive definition of sP55_iProver_split 
fof(lit_def_140,axiom,
    ( sP55_iProver_split
  <=> $false ) ).

%------ Positive definition of sP56_iProver_split 
fof(lit_def_141,axiom,
    ( sP56_iProver_split
  <=> $false ) ).

%------ Positive definition of sP57_iProver_split 
fof(lit_def_142,axiom,
    ( sP57_iProver_split
  <=> $true ) ).

%------ Positive definition of sP58_iProver_split 
fof(lit_def_143,axiom,
    ( sP58_iProver_split
  <=> $false ) ).

%------ Positive definition of sP59_iProver_split 
fof(lit_def_144,axiom,
    ( sP59_iProver_split
  <=> $true ) ).

%------ Positive definition of sP60_iProver_split 
fof(lit_def_145,axiom,
    ( sP60_iProver_split
  <=> $true ) ).

%------ Positive definition of sP61_iProver_split 
fof(lit_def_146,axiom,
    ( sP61_iProver_split
  <=> $false ) ).

%------ Positive definition of sP62_iProver_split 
fof(lit_def_147,axiom,
    ( sP62_iProver_split
  <=> $false ) ).

%------ Positive definition of sP63_iProver_split 
fof(lit_def_148,axiom,
    ( sP63_iProver_split
  <=> $false ) ).

%------ Positive definition of sP64_iProver_split 
fof(lit_def_149,axiom,
    ( sP64_iProver_split
  <=> $true ) ).

%------ Positive definition of sP65_iProver_split 
fof(lit_def_150,axiom,
    ( sP65_iProver_split
  <=> $true ) ).

%------ Positive definition of sP66_iProver_split 
fof(lit_def_151,axiom,
    ( sP66_iProver_split
  <=> $true ) ).

%------ Positive definition of sP67_iProver_split 
fof(lit_def_152,axiom,
    ( sP67_iProver_split
  <=> $true ) ).

%------ Positive definition of sP68_iProver_split 
fof(lit_def_153,axiom,
    ( sP68_iProver_split
  <=> $true ) ).

%------ Positive definition of sP69_iProver_split 
fof(lit_def_154,axiom,
    ( sP69_iProver_split
  <=> $false ) ).

%------ Positive definition of sP70_iProver_split 
fof(lit_def_155,axiom,
    ( sP70_iProver_split
  <=> $false ) ).

%------ Positive definition of sP71_iProver_split 
fof(lit_def_156,axiom,
    ( sP71_iProver_split
  <=> $false ) ).

%------ Positive definition of sP72_iProver_split 
fof(lit_def_157,axiom,
    ( sP72_iProver_split
  <=> $false ) ).

%------ Positive definition of sP73_iProver_split 
fof(lit_def_158,axiom,
    ( sP73_iProver_split
  <=> $false ) ).

%------ Positive definition of sP74_iProver_split 
fof(lit_def_159,axiom,
    ( sP74_iProver_split
  <=> $true ) ).

%------ Positive definition of sP75_iProver_split 
fof(lit_def_160,axiom,
    ( sP75_iProver_split
  <=> $false ) ).

%------ Positive definition of sP76_iProver_split 
fof(lit_def_161,axiom,
    ( sP76_iProver_split
  <=> $false ) ).

%------ Positive definition of sP77_iProver_split 
fof(lit_def_162,axiom,
    ( sP77_iProver_split
  <=> $true ) ).

%------ Positive definition of sP78_iProver_split 
fof(lit_def_163,axiom,
    ( sP78_iProver_split
  <=> $true ) ).

%------ Positive definition of sP79_iProver_split 
fof(lit_def_164,axiom,
    ( sP79_iProver_split
  <=> $true ) ).

%------ Positive definition of sP80_iProver_split 
fof(lit_def_165,axiom,
    ( sP80_iProver_split
  <=> $false ) ).

%------ Positive definition of sP81_iProver_split 
fof(lit_def_166,axiom,
    ( sP81_iProver_split
  <=> $false ) ).

%------ Positive definition of sP82_iProver_split 
fof(lit_def_167,axiom,
    ( sP82_iProver_split
  <=> $false ) ).

%------ Positive definition of sP83_iProver_split 
fof(lit_def_168,axiom,
    ( sP83_iProver_split
  <=> $true ) ).

%------ Positive definition of sP84_iProver_split 
fof(lit_def_169,axiom,
    ( sP84_iProver_split
  <=> $false ) ).

%------ Positive definition of sP85_iProver_split 
fof(lit_def_170,axiom,
    ( sP85_iProver_split
  <=> $true ) ).

%------ Positive definition of sP86_iProver_split 
fof(lit_def_171,axiom,
    ( sP86_iProver_split
  <=> $true ) ).

%------ Positive definition of sP87_iProver_split 
fof(lit_def_172,axiom,
    ( sP87_iProver_split
  <=> $true ) ).

%------ Positive definition of sP88_iProver_split 
fof(lit_def_173,axiom,
    ( sP88_iProver_split
  <=> $false ) ).

%------ Positive definition of sP89_iProver_split 
fof(lit_def_174,axiom,
    ( sP89_iProver_split
  <=> $true ) ).

%------ Positive definition of sP90_iProver_split 
fof(lit_def_175,axiom,
    ( sP90_iProver_split
  <=> $true ) ).

%------ Positive definition of sP91_iProver_split 
fof(lit_def_176,axiom,
    ( sP91_iProver_split
  <=> $true ) ).

%------ Positive definition of sP92_iProver_split 
fof(lit_def_177,axiom,
    ( sP92_iProver_split
  <=> $true ) ).

%------ Positive definition of sP93_iProver_split 
fof(lit_def_178,axiom,
    ( sP93_iProver_split
  <=> $false ) ).

%------ Positive definition of sP94_iProver_split 
fof(lit_def_179,axiom,
    ( sP94_iProver_split
  <=> $false ) ).

%------ Positive definition of sP95_iProver_split 
fof(lit_def_180,axiom,
    ( sP95_iProver_split
  <=> $true ) ).

%------ Positive definition of sP96_iProver_split 
fof(lit_def_181,axiom,
    ( sP96_iProver_split
  <=> $true ) ).

%------ Positive definition of sP97_iProver_split 
fof(lit_def_182,axiom,
    ( sP97_iProver_split
  <=> $false ) ).

%------ Positive definition of sP98_iProver_split 
fof(lit_def_183,axiom,
    ( sP98_iProver_split
  <=> $false ) ).

%------ Positive definition of sP99_iProver_split 
fof(lit_def_184,axiom,
    ( sP99_iProver_split
  <=> $false ) ).

%------ Positive definition of sP100_iProver_split 
fof(lit_def_185,axiom,
    ( sP100_iProver_split
  <=> $false ) ).

%------ Positive definition of sP101_iProver_split 
fof(lit_def_186,axiom,
    ( sP101_iProver_split
  <=> $false ) ).

%------ Positive definition of sP102_iProver_split 
fof(lit_def_187,axiom,
    ( sP102_iProver_split
  <=> $false ) ).

%------ Positive definition of sP103_iProver_split 
fof(lit_def_188,axiom,
    ( sP103_iProver_split
  <=> $true ) ).

%------ Positive definition of sP104_iProver_split 
fof(lit_def_189,axiom,
    ( sP104_iProver_split
  <=> $false ) ).

%------ Positive definition of sP105_iProver_split 
fof(lit_def_190,axiom,
    ( sP105_iProver_split
  <=> $true ) ).

%------ Positive definition of sP106_iProver_split 
fof(lit_def_191,axiom,
    ( sP106_iProver_split
  <=> $true ) ).

%------ Positive definition of sP107_iProver_split 
fof(lit_def_192,axiom,
    ( sP107_iProver_split
  <=> $false ) ).

%------ Positive definition of sP108_iProver_split 
fof(lit_def_193,axiom,
    ( sP108_iProver_split
  <=> $false ) ).

%------ Positive definition of sP109_iProver_split 
fof(lit_def_194,axiom,
    ( sP109_iProver_split
  <=> $false ) ).

%------ Positive definition of sP110_iProver_split 
fof(lit_def_195,axiom,
    ( sP110_iProver_split
  <=> $false ) ).

%------ Positive definition of sP111_iProver_split 
fof(lit_def_196,axiom,
    ( sP111_iProver_split
  <=> $false ) ).

%------ Positive definition of sP112_iProver_split 
fof(lit_def_197,axiom,
    ( sP112_iProver_split
  <=> $true ) ).

%------ Positive definition of sP113_iProver_split 
fof(lit_def_198,axiom,
    ( sP113_iProver_split
  <=> $false ) ).

%------ Positive definition of sP114_iProver_split 
fof(lit_def_199,axiom,
    ( sP114_iProver_split
  <=> $false ) ).

%------ Positive definition of sP115_iProver_split 
fof(lit_def_200,axiom,
    ( sP115_iProver_split
  <=> $false ) ).

%------ Positive definition of sP116_iProver_split 
fof(lit_def_201,axiom,
    ( sP116_iProver_split
  <=> $false ) ).

%------ Positive definition of sP117_iProver_split 
fof(lit_def_202,axiom,
    ( sP117_iProver_split
  <=> $false ) ).

%------ Positive definition of sP118_iProver_split 
fof(lit_def_203,axiom,
    ( sP118_iProver_split
  <=> $true ) ).

%------ Positive definition of sP119_iProver_split 
fof(lit_def_204,axiom,
    ( sP119_iProver_split
  <=> $false ) ).

%------ Positive definition of sP120_iProver_split 
fof(lit_def_205,axiom,
    ( sP120_iProver_split
  <=> $false ) ).

%------ Positive definition of sP121_iProver_split 
fof(lit_def_206,axiom,
    ( sP121_iProver_split
  <=> $false ) ).

%------ Positive definition of sP122_iProver_split 
fof(lit_def_207,axiom,
    ( sP122_iProver_split
  <=> $true ) ).

%------ Positive definition of sP123_iProver_split 
fof(lit_def_208,axiom,
    ( sP123_iProver_split
  <=> $true ) ).

%------ Positive definition of sP124_iProver_split 
fof(lit_def_209,axiom,
    ( sP124_iProver_split
  <=> $true ) ).

%------ Positive definition of sP125_iProver_split 
fof(lit_def_210,axiom,
    ( sP125_iProver_split
  <=> $false ) ).

%------ Positive definition of sP126_iProver_split 
fof(lit_def_211,axiom,
    ( sP126_iProver_split
  <=> $false ) ).

%------ Positive definition of sP127_iProver_split 
fof(lit_def_212,axiom,
    ( sP127_iProver_split
  <=> $true ) ).

%------ Positive definition of sP128_iProver_split 
fof(lit_def_213,axiom,
    ( sP128_iProver_split
  <=> $false ) ).

%------ Positive definition of sP129_iProver_split 
fof(lit_def_214,axiom,
    ( sP129_iProver_split
  <=> $false ) ).

%------ Positive definition of sP130_iProver_split 
fof(lit_def_215,axiom,
    ( sP130_iProver_split
  <=> $false ) ).

%------ Positive definition of sP131_iProver_split 
fof(lit_def_216,axiom,
    ( sP131_iProver_split
  <=> $false ) ).

%------ Positive definition of sP132_iProver_split 
fof(lit_def_217,axiom,
    ( sP132_iProver_split
  <=> $true ) ).

%------ Positive definition of sP133_iProver_split 
fof(lit_def_218,axiom,
    ( sP133_iProver_split
  <=> $false ) ).

%------ Positive definition of sP134_iProver_split 
fof(lit_def_219,axiom,
    ( sP134_iProver_split
  <=> $true ) ).

%------ Positive definition of sP135_iProver_split 
fof(lit_def_220,axiom,
    ( sP135_iProver_split
  <=> $false ) ).

%------ Positive definition of sP136_iProver_split 
fof(lit_def_221,axiom,
    ( sP136_iProver_split
  <=> $false ) ).

%------ Positive definition of sP137_iProver_split 
fof(lit_def_222,axiom,
    ( sP137_iProver_split
  <=> $false ) ).

%------ Positive definition of sP138_iProver_split 
fof(lit_def_223,axiom,
    ( sP138_iProver_split
  <=> $false ) ).

%------ Positive definition of sP139_iProver_split 
fof(lit_def_224,axiom,
    ( sP139_iProver_split
  <=> $false ) ).

%------ Positive definition of sP140_iProver_split 
fof(lit_def_225,axiom,
    ( sP140_iProver_split
  <=> $false ) ).

%------ Positive definition of sP141_iProver_split 
fof(lit_def_226,axiom,
    ( sP141_iProver_split
  <=> $false ) ).

%------ Positive definition of sP142_iProver_split 
fof(lit_def_227,axiom,
    ( sP142_iProver_split
  <=> $false ) ).

%------ Positive definition of sP143_iProver_split 
fof(lit_def_228,axiom,
    ( sP143_iProver_split
  <=> $false ) ).

%------ Positive definition of sP144_iProver_split 
fof(lit_def_229,axiom,
    ( sP144_iProver_split
  <=> $false ) ).

%------ Positive definition of sP145_iProver_split 
fof(lit_def_230,axiom,
    ( sP145_iProver_split
  <=> $false ) ).

%------ Positive definition of sP146_iProver_split 
fof(lit_def_231,axiom,
    ( sP146_iProver_split
  <=> $false ) ).

%------ Positive definition of sP147_iProver_split 
fof(lit_def_232,axiom,
    ( sP147_iProver_split
  <=> $false ) ).

%------ Positive definition of sP148_iProver_split 
fof(lit_def_233,axiom,
    ( sP148_iProver_split
  <=> $true ) ).

%------ Positive definition of sP149_iProver_split 
fof(lit_def_234,axiom,
    ( sP149_iProver_split
  <=> $false ) ).

%------ Positive definition of sP150_iProver_split 
fof(lit_def_235,axiom,
    ( sP150_iProver_split
  <=> $false ) ).

%------ Positive definition of sP151_iProver_split 
fof(lit_def_236,axiom,
    ( sP151_iProver_split
  <=> $false ) ).

%------ Positive definition of sP152_iProver_split 
fof(lit_def_237,axiom,
    ( sP152_iProver_split
  <=> $false ) ).

%------ Positive definition of sP153_iProver_split 
fof(lit_def_238,axiom,
    ( sP153_iProver_split
  <=> $false ) ).

%------ Positive definition of sP154_iProver_split 
fof(lit_def_239,axiom,
    ( sP154_iProver_split
  <=> $true ) ).

%------ Positive definition of sP155_iProver_split 
fof(lit_def_240,axiom,
    ( sP155_iProver_split
  <=> $true ) ).

%------ Positive definition of sP156_iProver_split 
fof(lit_def_241,axiom,
    ( sP156_iProver_split
  <=> $false ) ).

%------ Positive definition of sP157_iProver_split 
fof(lit_def_242,axiom,
    ( sP157_iProver_split
  <=> $false ) ).

%------ Positive definition of sP158_iProver_split 
fof(lit_def_243,axiom,
    ( sP158_iProver_split
  <=> $false ) ).

%------ Positive definition of sP159_iProver_split 
fof(lit_def_244,axiom,
    ( sP159_iProver_split
  <=> $true ) ).

%------ Positive definition of sP160_iProver_split 
fof(lit_def_245,axiom,
    ( sP160_iProver_split
  <=> $false ) ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem  : SYN429-1 : TPTP v8.1.0. Released v2.1.0.
% 0.11/0.14  % Command  : python3 prover_driver.py --schedule_mode external --schedule fof_schedule --no_cores 8 --problem_version fof /export/starexec/sandbox/benchmark/theBenchmark.p 300 --prover /export/starexec/sandbox/solver/bin/res/iproveropt_no_z3
% 0.13/0.35  % Computer : n010.cluster.edu
% 0.13/0.35  % Model    : x86_64 x86_64
% 0.13/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.35  % Memory   : 8042.1875MB
% 0.13/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.35  % CPULimit : 300
% 0.13/0.35  % WCLimit  : 300
% 0.13/0.35  % DateTime : Mon Sep  5 03:17:42 EDT 2022
% 0.13/0.35  % CPUTime  : 
% 7.58/2.04  % SZS status Started for /export/starexec/sandbox/benchmark/theBenchmark.p
% 7.58/2.04  
% 7.58/2.04  %---------------- iProver v3.6 (pre CASC-J11 2022) ----------------%
% 7.58/2.04  
% 7.58/2.04  ------  iProver source info
% 7.58/2.04  
% 7.58/2.04  git: date: 2022-07-26 19:47:37 +0300
% 7.58/2.04  git: sha1: 69e283425f6c8ae3fb9e67f2058d741e849b12e1
% 7.58/2.04  git: non_committed_changes: false
% 7.58/2.04  git: last_make_outside_of_git: false
% 7.58/2.04  
% 7.58/2.04  ------ Parsing...successful
% 7.58/2.04  
% 7.58/2.04  
% 7.58/2.04  
% 7.58/2.04  ------ Preprocessing... sf_s  rm: 21 0s  sf_e  pe_s  pe_e 
% 7.58/2.04  
% 7.58/2.04  ------ Preprocessing... gs_s  sp: 242 0s  gs_e  snvd_s sp: 0 0s snvd_e 
% 7.58/2.04  ------ Proving...
% 7.58/2.04  ------ Problem Properties 
% 7.58/2.04  
% 7.58/2.04  
% 7.58/2.04  clauses                                 783
% 7.58/2.04  conjectures                             774
% 7.58/2.04  EPR                                     783
% 7.58/2.04  Horn                                    339
% 7.58/2.04  unary                                   0
% 7.58/2.04  binary                                  160
% 7.58/2.04  lits                                    2674
% 7.58/2.04  lits eq                                 0
% 7.58/2.04  fd_pure                                 0
% 7.58/2.04  fd_pseudo                               0
% 7.58/2.04  fd_cond                                 0
% 7.58/2.04  fd_pseudo_cond                          0
% 7.58/2.04  AC symbols                              0
% 7.58/2.04  
% 7.58/2.04  ------ Input Options Time Limit: Unbounded
% 7.58/2.04  
% 7.58/2.04  
% 7.58/2.04  ------ 
% 7.58/2.04  Current options:
% 7.58/2.04  ------ 
% 7.58/2.04  
% 7.58/2.04  
% 7.58/2.04  
% 7.58/2.04  
% 7.58/2.04  ------ Proving...
% 7.58/2.04  
% 7.58/2.04  
% 7.58/2.04  % SZS status Satisfiable for theBenchmark.p
% 7.58/2.04  
% 7.58/2.04  ------ Building Model...Done
% 7.58/2.04  
% 7.58/2.04  %------ The model is defined over ground terms (initial term algebra).
% 7.58/2.04  %------ Predicates are defined as (\forall x_1,..,x_n  ((~)P(x_1,..,x_n) <=> (\phi(x_1,..,x_n)))) 
% 7.58/2.04  %------ where \phi is a formula over the term algebra.
% 7.58/2.04  %------ If we have equality in the problem then it is also defined as a predicate above, 
% 7.58/2.04  %------ with "=" on the right-hand-side of the definition interpreted over the term algebra term_algebra_type
% 7.58/2.04  %------ See help for --sat_out_model for different model outputs.
% 7.58/2.04  %------ equality_sorted(X0,X1,X2) can be used in the place of usual "="
% 7.58/2.04  %------ where the first argument stands for the sort ($i in the unsorted case)
% 7.58/2.04  % SZS output start Model for theBenchmark.p
% See solution above
% 7.58/2.05  ------                               Statistics
% 7.58/2.05  
% 7.58/2.05  ------ Selected
% 7.58/2.05  
% 7.58/2.05  total_time:                             0.693
% 7.58/2.05  
%------------------------------------------------------------------------------