TSTP Solution File: SYN721+1 by SInE---0.4

View Problem - Process Solution

```%------------------------------------------------------------------------------
% File     : SInE---0.4
% Problem  : SYN721+1 : TPTP v5.0.0. Released v2.5.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : Source/sine.py -e eprover -t %d %s

% Computer : art06.cs.miami.edu
% Model    : i686 i686
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 2018MB
% OS       : Linux 2.6.26.8-57.fc8
% CPULimit : 300s
% DateTime : Sun Dec 26 13:54:18 EST 2010

% Result   : Theorem 0.16s
% Output   : CNFRefutation 0.16s
% Verified :
% SZS Type : Refutation
%            Derivation depth      :   12
%            Number of leaves      :    1
% Syntax   : Number of formulae    :   16 (   8 unt;   0 def)
%            Number of atoms       :   49 (   0 equ)
%            Maximal formula atoms :    7 (   3 avg)
%            Number of connectives :   51 (  18   ~;  12   |;  15   &)
%                                         (   0 <=>;   6  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   12 (   4 avg)
%            Maximal term depth    :    1 (   1 avg)
%            Number of predicates  :    3 (   2 usr;   1 prp; 0-2 aty)
%            Number of functors    :    2 (   2 usr;   2 con; 0-0 aty)
%            Number of variables   :   38 (   4 sgn  26   !;   4   ?)

%------------------------------------------------------------------------------
fof(1,conjecture,
( ( r(a,b)
& ! [X1] :
( ? [X2] : r(X1,X2)
=> q(X1,X1) )
& ! [X3,X4] :
( q(X3,X4)
=> ! [X5] : r(X5,X4) ) )
=> ? [X6] :
( r(b,X6)
& q(X6,a) ) ),
file('/tmp/tmpIqQbyb/sel_SYN721+1.p_1',lx1) ).

fof(2,negated_conjecture,
~ ( ( r(a,b)
& ! [X1] :
( ? [X2] : r(X1,X2)
=> q(X1,X1) )
& ! [X3,X4] :
( q(X3,X4)
=> ! [X5] : r(X5,X4) ) )
=> ? [X6] :
( r(b,X6)
& q(X6,a) ) ),
inference(assume_negation,[status(cth)],[1]) ).

fof(3,negated_conjecture,
( r(a,b)
& ! [X1] :
( ! [X2] : ~ r(X1,X2)
| q(X1,X1) )
& ! [X3,X4] :
( ~ q(X3,X4)
| ! [X5] : r(X5,X4) )
& ! [X6] :
( ~ r(b,X6)
| ~ q(X6,a) ) ),
inference(fof_nnf,[status(thm)],[2]) ).

fof(4,negated_conjecture,
( r(a,b)
& ! [X7] :
( ! [X8] : ~ r(X7,X8)
| q(X7,X7) )
& ! [X9,X10] :
( ~ q(X9,X10)
| ! [X11] : r(X11,X10) )
& ! [X12] :
( ~ r(b,X12)
| ~ q(X12,a) ) ),
inference(variable_rename,[status(thm)],[3]) ).

fof(5,negated_conjecture,
! [X7,X8,X9,X10,X11,X12] :
( ( ~ r(b,X12)
| ~ q(X12,a) )
& ( r(X11,X10)
| ~ q(X9,X10) )
& ( ~ r(X7,X8)
| q(X7,X7) )
& r(a,b) ),
inference(shift_quantors,[status(thm)],[4]) ).

cnf(6,negated_conjecture,
r(a,b),
inference(split_conjunct,[status(thm)],[5]) ).

cnf(7,negated_conjecture,
( q(X1,X1)
| ~ r(X1,X2) ),
inference(split_conjunct,[status(thm)],[5]) ).

cnf(8,negated_conjecture,
( r(X3,X2)
| ~ q(X1,X2) ),
inference(split_conjunct,[status(thm)],[5]) ).

cnf(9,negated_conjecture,
( ~ q(X1,a)
| ~ r(b,X1) ),
inference(split_conjunct,[status(thm)],[5]) ).

cnf(10,negated_conjecture,
q(a,a),
inference(spm,[status(thm)],[7,6,theory(equality)]) ).

cnf(11,negated_conjecture,
r(X1,a),
inference(spm,[status(thm)],[8,10,theory(equality)]) ).

cnf(13,negated_conjecture,
q(X1,X1),
inference(spm,[status(thm)],[7,11,theory(equality)]) ).

cnf(15,negated_conjecture,
~ r(b,a),
inference(spm,[status(thm)],[9,13,theory(equality)]) ).

cnf(18,negated_conjecture,
\$false,
inference(rw,[status(thm)],[15,11,theory(equality)]) ).

cnf(19,negated_conjecture,
\$false,
inference(cn,[status(thm)],[18,theory(equality)]) ).

cnf(20,negated_conjecture,
\$false,
19,
[proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % SZS status Started for /home/graph/tptp/TPTP/Problems/SYN/SYN721+1.p
% --creating new selector for []
% -running prover on /tmp/tmpIqQbyb/sel_SYN721+1.p_1 with time limit 29
% -prover status Theorem
% Problem SYN721+1.p solved in phase 0.
% % SZS status Theorem for /home/graph/tptp/TPTP/Problems/SYN/SYN721+1.p
% % SZS status Ended for /home/graph/tptp/TPTP/Problems/SYN/SYN721+1.p
% Solved 1 out of 1.
% # Problem is unsatisfiable (or provable), constructing proof object
% # SZS status Theorem
% # SZS output start CNFRefutation.
% See solution above
% # SZS output end CNFRefutation
%
%------------------------------------------------------------------------------
```