TSTP Solution File: SYN969+1 by Princess---170717

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Princess---170717
% Problem  : SYN969+1 : TPTP v8.1.0. Released v3.1.0.
% Transfm  : none
% Format   : tptp
% Command  : princess-casc +printProof -timeout=%d %s

% Computer : n024.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Thu Jul 21 11:14:52 EDT 2022

% Result   : Theorem 1.86s 1.09s
% Output   : Proof 2.36s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.13  % Problem  : SYN969+1 : TPTP v8.1.0. Released v3.1.0.
% 0.07/0.13  % Command  : princess-casc +printProof -timeout=%d %s
% 0.14/0.35  % Computer : n024.cluster.edu
% 0.14/0.35  % Model    : x86_64 x86_64
% 0.14/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.35  % Memory   : 8042.1875MB
% 0.14/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.35  % CPULimit : 300
% 0.14/0.35  % WCLimit  : 600
% 0.14/0.35  % DateTime : Mon Jul 11 12:51:58 EDT 2022
% 0.14/0.35  % CPUTime  : 
% 0.64/0.62  ________       _____
% 0.64/0.62  ___  __ \_________(_)________________________________
% 0.64/0.62  __  /_/ /_  ___/_  /__  __ \  ___/  _ \_  ___/_  ___/
% 0.64/0.62  _  ____/_  /   _  / _  / / / /__ /  __/(__  )_(__  )
% 0.64/0.62  /_/     /_/    /_/  /_/ /_/\___/ \___//____/ /____/
% 0.64/0.62  
% 0.64/0.62  A Theorem Prover for First-Order Logic modulo Linear Integer Arithmetic
% 0.64/0.62  (CASC 2017-07-17)
% 0.64/0.62  
% 0.64/0.62  (c) Philipp Rümmer, 2009-2017
% 0.64/0.62  (contributions by Peter Backeman, Peter Baumgartner,
% 0.64/0.62                    Angelo Brillout, Aleksandar Zeljic)
% 0.64/0.62  Free software under GNU Lesser General Public License (LGPL).
% 0.64/0.62  Bug reports to ph_r@gmx.net
% 0.64/0.62  
% 0.64/0.62  For more information, visit http://www.philipp.ruemmer.org/princess.shtml
% 0.64/0.62  
% 0.64/0.62  Loading /export/starexec/sandbox2/benchmark/theBenchmark.p ...
% 0.69/0.65  Prover 0: Options:  +triggersInConjecture -genTotalityAxioms=ctors +tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=allUni -realRatSaturationRounds=0 -ignoreQuantifiers -constructProofs=never -generateTriggers=all -randomSeed=off
% 1.38/0.91  Prover 0: Preprocessing ...
% 1.63/1.03  Prover 0: Constructing countermodel ...
% 1.86/1.09  Prover 0: proved (439ms)
% 1.86/1.09  
% 1.86/1.09  VALID
% 1.86/1.09  % SZS status Theorem for theBenchmark
% 1.86/1.09  
% 1.86/1.09  Prover 1: Options:  +triggersInConjecture -genTotalityAxioms=none -tightFunctionScopes -clausifier=none -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=maximal -realRatSaturationRounds=0 +ignoreQuantifiers -constructProofs=always -generateTriggers=all -randomSeed=off
% 1.86/1.10  Prover 1: Preprocessing ...
% 1.86/1.13  Prover 1: Constructing countermodel ...
% 2.27/1.20  Prover 1: Found proof (size 13)
% 2.27/1.20  Prover 1: proved (107ms)
% 2.27/1.20  
% 2.27/1.20  
% 2.27/1.20  % SZS output start Proof for theBenchmark
% 2.27/1.21  Assumptions after simplification:
% 2.27/1.21  ---------------------------------
% 2.27/1.21  
% 2.27/1.21    (prove_this)
% 2.36/1.26     ? [v0: $int] :  ? [v1: $int] : ( ~ (v1 = 0) & r(v0) = 0 & q(v0) = v1 &  !
% 2.36/1.26      [v2: $int] :  ! [v3: $int] : (v3 = 0 |  ~ (q(v2) = v3) |  ? [v4: $int] : ( ~
% 2.36/1.26          (v4 = 0) & p(v2) = v4)) &  ! [v2: $int] : ( ~ (r(v2) = 0) | p(v2) = 0))
% 2.36/1.27  
% 2.36/1.27    (axioms)
% 2.36/1.27     ! [v0: $int] :  ! [v1: $int] :  ! [v2: $int] : (v1 = v0 |  ~ (r(v2) = v1) | 
% 2.36/1.27      ~ (r(v2) = v0)) &  ! [v0: $int] :  ! [v1: $int] :  ! [v2: $int] : (v1 = v0 |
% 2.36/1.27       ~ (q(v2) = v1) |  ~ (q(v2) = v0)) &  ! [v0: $int] :  ! [v1: $int] :  ! [v2:
% 2.36/1.27      $int] : (v1 = v0 |  ~ (p(v2) = v1) |  ~ (p(v2) = v0))
% 2.36/1.27  
% 2.36/1.27  Those formulas are unsatisfiable:
% 2.36/1.27  ---------------------------------
% 2.36/1.27  
% 2.36/1.27  Begin of proof
% 2.36/1.27  | 
% 2.36/1.27  | ALPHA: (axioms) implies:
% 2.36/1.28  |   (1)   ! [v0: $int] :  ! [v1: $int] :  ! [v2: $int] : (v1 = v0 |  ~ (p(v2) =
% 2.36/1.28  |            v1) |  ~ (p(v2) = v0))
% 2.36/1.28  | 
% 2.36/1.28  | DELTA: instantiating (prove_this) with fresh symbols all_1_0, all_1_1 gives:
% 2.36/1.28  |   (2)   ~ (all_1_0 = 0) & r(all_1_1) = 0 & q(all_1_1) = all_1_0 &  ! [v0:
% 2.36/1.28  |          $int] :  ! [v1: $int] : (v1 = 0 |  ~ (q(v0) = v1) |  ? [v2: $int] : (
% 2.36/1.28  |            ~ (v2 = 0) & p(v0) = v2)) &  ! [v0: $int] : ( ~ (r(v0) = 0) | p(v0)
% 2.36/1.28  |          = 0)
% 2.36/1.28  | 
% 2.36/1.28  | ALPHA: (2) implies:
% 2.36/1.28  |   (3)   ~ (all_1_0 = 0)
% 2.36/1.28  |   (4)  q(all_1_1) = all_1_0
% 2.36/1.28  |   (5)  r(all_1_1) = 0
% 2.36/1.28  |   (6)   ! [v0: $int] : ( ~ (r(v0) = 0) | p(v0) = 0)
% 2.36/1.29  |   (7)   ! [v0: $int] :  ! [v1: $int] : (v1 = 0 |  ~ (q(v0) = v1) |  ? [v2:
% 2.36/1.29  |            $int] : ( ~ (v2 = 0) & p(v0) = v2))
% 2.36/1.29  | 
% 2.36/1.29  | GROUND_INST: instantiating (6) with all_1_1, simplifying with (5) gives:
% 2.36/1.29  |   (8)  p(all_1_1) = 0
% 2.36/1.29  | 
% 2.36/1.29  | GROUND_INST: instantiating (7) with all_1_1, all_1_0, simplifying with (4)
% 2.36/1.29  |              gives:
% 2.36/1.29  |   (9)  all_1_0 = 0 |  ? [v0: $int] : ( ~ (v0 = 0) & p(all_1_1) = v0)
% 2.36/1.29  | 
% 2.36/1.29  | BETA: splitting (9) gives:
% 2.36/1.29  | 
% 2.36/1.29  | Case 1:
% 2.36/1.29  | | 
% 2.36/1.29  | |   (10)  all_1_0 = 0
% 2.36/1.29  | | 
% 2.36/1.29  | | REDUCE: (3), (10) imply:
% 2.36/1.29  | |   (11)   ~ (0 = 0)
% 2.36/1.29  | | 
% 2.36/1.29  | | CLOSE: (11) is inconsistent.
% 2.36/1.29  | | 
% 2.36/1.29  | Case 2:
% 2.36/1.29  | | 
% 2.36/1.29  | |   (12)   ? [v0: $int] : ( ~ (v0 = 0) & p(all_1_1) = v0)
% 2.36/1.29  | | 
% 2.36/1.29  | | DELTA: instantiating (12) with fresh symbol all_14_0 gives:
% 2.36/1.29  | |   (13)   ~ (all_14_0 = 0) & p(all_1_1) = all_14_0
% 2.36/1.29  | | 
% 2.36/1.29  | | ALPHA: (13) implies:
% 2.36/1.29  | |   (14)   ~ (all_14_0 = 0)
% 2.36/1.30  | |   (15)  p(all_1_1) = all_14_0
% 2.36/1.30  | | 
% 2.36/1.30  | | GROUND_INST: instantiating (1) with all_14_0, 0, all_1_1, simplifying with
% 2.36/1.30  | |              (8), (15) gives:
% 2.36/1.30  | |   (16)  all_14_0 = 0
% 2.36/1.30  | | 
% 2.36/1.30  | | REDUCE: (14), (16) imply:
% 2.36/1.30  | |   (17)   ~ (0 = 0)
% 2.36/1.30  | | 
% 2.36/1.30  | | CLOSE: (17) is inconsistent.
% 2.36/1.30  | | 
% 2.36/1.30  | End of split
% 2.36/1.30  | 
% 2.36/1.30  End of proof
% 2.36/1.30  % SZS output end Proof for theBenchmark
% 2.36/1.30  
% 2.36/1.30  670ms
%------------------------------------------------------------------------------