TSTP Solution File: SYN969+1 by Twee---2.4.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.1
% Problem  : SYN969+1 : TPTP v8.1.0. Released v3.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n014.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Sep 29 23:26:11 EDT 2022

% Result   : Theorem 0.20s 0.38s
% Output   : Proof 0.20s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : SYN969+1 : TPTP v8.1.0. Released v3.1.0.
% 0.03/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.34  % Computer : n014.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Mon Sep  5 09:45:59 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 0.20/0.38  % SZS status Theorem
% 0.20/0.38  
% 0.20/0.38  % SZS output start Proof
% 0.20/0.38  Take the following subset of the input axioms:
% 0.20/0.38    fof(prove_this, conjecture, ![B]: ((![X]: (p(X) => q(X)) & r(B)) => (![Y]: (r(Y) => p(Y)) => q(B)))).
% 0.20/0.38  
% 0.20/0.38  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.20/0.38  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.20/0.38  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.20/0.38    fresh(y, y, x1...xn) = u
% 0.20/0.38    C => fresh(s, t, x1...xn) = v
% 0.20/0.38  where fresh is a fresh function symbol and x1..xn are the free
% 0.20/0.38  variables of u and v.
% 0.20/0.38  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.20/0.38  input problem has no model of domain size 1).
% 0.20/0.38  
% 0.20/0.38  The encoding turns the above axioms into the following unit equations and goals:
% 0.20/0.38  
% 0.20/0.38  Axiom 1 (prove_this): r(b) = true.
% 0.20/0.38  Axiom 2 (prove_this_1): fresh(X, X, Y) = true.
% 0.20/0.38  Axiom 3 (prove_this_3): fresh2(X, X, Y) = true.
% 0.20/0.38  Axiom 4 (prove_this_1): fresh(p(X), true, X) = q(X).
% 0.20/0.38  Axiom 5 (prove_this_3): fresh2(r(X), true, X) = p(X).
% 0.20/0.38  
% 0.20/0.38  Goal 1 (prove_this_2): q(b) = true.
% 0.20/0.38  Proof:
% 0.20/0.38    q(b)
% 0.20/0.38  = { by axiom 4 (prove_this_1) R->L }
% 0.20/0.38    fresh(p(b), true, b)
% 0.20/0.38  = { by axiom 5 (prove_this_3) R->L }
% 0.20/0.38    fresh(fresh2(r(b), true, b), true, b)
% 0.20/0.38  = { by axiom 1 (prove_this) }
% 0.20/0.38    fresh(fresh2(true, true, b), true, b)
% 0.20/0.38  = { by axiom 3 (prove_this_3) }
% 0.20/0.38    fresh(true, true, b)
% 0.20/0.38  = { by axiom 2 (prove_this_1) }
% 0.20/0.38    true
% 0.20/0.38  % SZS output end Proof
% 0.20/0.38  
% 0.20/0.38  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------